Un nouveau logiciel basé sur l'intelligence artificielle aide à interpréter des données complexes

Compression intelligente des données bruyantes

22.12.2022 - Allemagne

Les données expérimentales sont souvent non seulement très dimensionnelles, mais aussi bruyantes et pleines d'artefacts. Il est donc difficile d'interpréter ces données. Une équipe du HZB a conçu un logiciel qui utilise des réseaux neuronaux à apprentissage automatique pour compresser les données de manière intelligente et reconstruire une version à faible bruit à l'étape suivante. Cela permet de reconnaître des corrélations qui, autrement, ne seraient pas discernables. Le logiciel a été utilisé avec succès dans le diagnostic des photons au laser à électrons libres FLASH de DESY. Mais il convient à des applications scientifiques très différentes.

Computer-generated image

Image symbolique

Plus n'est pas toujours mieux, mais c'est parfois un problème. Avec des données très complexes, qui ont plusieurs dimensions en raison de leurs nombreux paramètres, les corrélations ne sont souvent plus reconnaissables. D'autant plus que les données obtenues expérimentalement sont en plus perturbées et bruitées en raison d'influences qui ne peuvent être contrôlées.

Aider l'homme à interpréter les données

Aujourd'hui, de nouveaux logiciels basés sur des méthodes d'intelligence artificielle peuvent aider : Il s'agit d'une classe spéciale de réseaux neuronaux (NN) que les experts appellent "réseau autoencodeur variationnel désenchevêtré (β-VAE)". En termes simples, le premier NN se charge de compresser les données, tandis que le second NN reconstruit ensuite les données. "Au cours de ce processus, les deux NN sont entraînés de manière à ce que la forme comprimée puisse être interprétée par les humains", explique le Dr Gregor Hartmann. Le physicien et data scientist supervise le Joint Lab on Artificial Intelligence Methods at HZB, qui est géré par HZB en collaboration avec l'université de Kassel.

Extraire des principes fondamentaux sans connaissances préalables

Google Deepmind avait déjà proposé d'utiliser les β-VAE en 2017. De nombreux experts supposaient que l'application dans le monde réel serait difficile, car les composantes non linéaires sont difficiles à démêler. "Après plusieurs années à apprendre comment les NNs apprennent, cela a finalement fonctionné", déclare Hartmann. Les β-VAE sont capables d'extraire le principe de base sous-jacent des données sans connaissance préalable.

L'énergie des photons de FLASH déterminée

Dans l'étude qui vient d'être publiée, le groupe a utilisé le logiciel pour déterminer l'énergie photonique de FLASH à partir de spectres photoélectroniques à coup unique. "Nous avons réussi à extraire cette information de données bruyantes de temps de vol d'électrons, et ce bien mieux qu'avec les méthodes d'analyse conventionnelles", explique Hartmann. Même les données comportant des artefacts spécifiques au détecteur peuvent être nettoyées de cette manière.

Un outil puissant pour différents problèmes

"La méthode est vraiment bonne lorsqu'il s'agit de données altérées", souligne Hartmann. Le programme est même capable de reconstruire de minuscules signaux qui n'étaient pas visibles dans les données brutes. De tels réseaux peuvent aider à découvrir des effets physiques inattendus ou des corrélations dans de grands ensembles de données expérimentales. "La compression intelligente des données basée sur l'IA est un outil très puissant, et pas seulement dans le domaine de la science des photons", déclare Hartmann.

Branchez et jouez

Au total, Hartmann et son équipe ont passé trois ans à développer le logiciel. "Mais maintenant, il est plus ou moins plug and play. Nous espérons que bientôt de nombreux collègues viendront avec leurs données et que nous pourrons les aider."

Note: Cet article a été traduit à l'aide d'un système informatique sans intervention humaine. LUMITOS propose ces traductions automatiques pour présenter un plus large éventail d'actualités. Comme cet article a été traduit avec traduction automatique, il est possible qu'il contienne des erreurs de vocabulaire, de syntaxe ou de grammaire. L'article original dans Anglais peut être trouvé ici.

Publication originale

Autres actualités du département science

Ces produits pourraient vous intéresser

Limsophy

Limsophy de AAC Infotray

Optimisez vos processus de laboratoire avec Limsophy LIMS

Intégration transparente et optimisation des processus dans la gestion des données de laboratoire

systèmes d'information de laboratoire
ERP-Software

ERP-Software de GUS

GUS-OS Suite : votre ERP pour l'industrie de process

Nous optimisons les processus de votre entreprise

logiciels
LAUDA.LIVE

LAUDA.LIVE de LAUDA

LAUDA.LIVE - La plateforme numérique pour la gestion de vos appareils

Options complètes de gestion de flotte pour chaque appareil LAUDA - avec ou sans connectivité IoT

logiciels de laboratoire
Loading...

Actualités les plus lues

Plus actualités de nos autres portails

Si près que même
les molécules
deviennent rouges...