Carbon nanotubes outperform copper nanowires as interconnects
Scientists create robust quantum models to compare key characteristics of copper and CNTs
To better understand and more precisely measure the key characteristics of both copper nanowires and carbon nanotube bundles, the researchers used advanced quantum-mechanical computer modeling to run vast simulations on a high-powered supercomputer. It is the first such study to examine copper nanowire using quantum mechanics rather than empirical laws.
After crunching numbers for months with the help of Rensselaer's Computational Center for Nanotechnology Innovations, the research team concluded that the carbon nanotube bundles boasted a much smaller electrical resistance than the copper nanowires. This lower resistance suggests carbon nanotube bundles would therefore be better suited for interconnect applications.
"With this study, we have provided a road map for accurately comparing the performance of copper wire and carbon nanotube wire," said Saroj Nayak, an associate professor in Rensselaer's Department of Department of Physics, Applied Physics, and Astronomy, who led the research team. "Given the data we collected, we believe that carbon nanotubes at 45 nanometers will outperform copper nanowire."
The research results will be featured in the March issue of Journal of Physics: Condensed Matter.
Other news from the department science
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.