You can't teach old materials new tricks
Decades-old challenge has researchers seeking new materials for radiation detection
"Until now, it can be argued that we've approached the challenge in an Edisonian-style; I think it's time to make a drastic change in how we pursue solutions to radiation detection," said Anthony Peurrung, director of the Physical and Chemical Sciences division at Pacific Northwest National Laboratory. "In order for us to make new discoveries, we need to improve our understanding of radiation physics so that we make educated choices about which materials will and will not perform as we need them to, thus working more efficiently toward a solution."
Five primary materials are used for radiation detection, but they all have limitations, such as small size, challenges in manufacturing, poor discrimination of radionuclides and poor sensitivity. For example, single crystalline materials, used as semiconductors or scintillators, generally provide the highest sensitivity and best energy resolution. But, it can take a decade or more to develop high-quality, single crystals that are of sufficient size for use as radiation detectors, and there are a limited number of manufacturing facilities to produce the crystals.
Peurrung leads PNNL's Radiation Detection and Material Discovery Initiative, which is a three-year, $4.5 million research effort aimed at discovering new materials for radionuclide identification, accelerating discovery processes and improving our fundamental understanding of radiation detection.
Most read news
Organizations
Other news from the department science
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.