A researcher of UPV/EHU has designed nanomagnets for industry

15-Feb-2008

It is well known that current technology tends to design tools that are ever smaller and that nanotechnology, although it its infancy, is a theme that is very much in fashion in our society. Who has not heard of nanotubes, nanoparticles and nanomagnets, etc? The PhD thesis by Ms Sonia Moralejo García, defended at the Faculty of Science and Technology at the University of the Basque Country (UPV/EHU), used various techniques to analyse the manufacture of nanomagnets and magnetic devices of widespread industrial application.

The PhD entitled, Nanofabricación y propiedades magnéticas de nanoimanes patronados de películas delgadas (The nanomanufacture and magnetic properties of nanomagnets patterned with thin films) was led by Professor Fernando Castaño Almendral and doctor Fernando Castaño Sánchez, and obtained excellent cum laude. The researcher has had the advantage of a number of study-stays in various laboratories: the Max Planck Institute of Microstructure Physics in Germany and the Cavendish Laboratory of the University of Cambridge in the United Kingdom which contributed to completing her PhD thesis.

This work in the field of nanotechnology combines two multidisciplinary experimental worlds, the technological and the scientific. The technological is related to the manufacture of nanomagnets and magnetic devices, for which a complete series of techniques have been developed and/or made ready and which enable, from start to finish, the obtaining of samples by conventional methods and of wide industrial application. "Amongst other things, we have created a system for growing a number of materials at the same time, instead of just one at a time" said the researcher. In this PhD, two materials have been mainly employed: Ni-Fe and Co-Fe alloys.

Their magnetic behaviour has been studied, both as continuous layers and as samples of smaller size (threads, circles, ellipses), varying their shape and distances, given that they have different behaviour patterns - knowing these is essential for the different applications.

The magnetic behaviour of these materials was studied using hysteresis. Such magnetic behaviour enables the storage of computer hard discs in magnets: the magnetic field induces a magnetising of the small magnet - codified in a binary manner as either 0 or 1 -; this codification remains in the absence of the magnetic field and can be read subsequently, but it can also be inverted, applying a magnetic field in the opposite sense.

Other news from the department science

These products might interest you

NANOPHOX CS

NANOPHOX CS by Sympatec

Particle size analysis in the nano range: Analyzing high concentrations with ease

Reliable results without time-consuming sample preparation

particle analyzers
Eclipse

Eclipse by Wyatt Technology

FFF-MALS system for separation and characterization of macromolecules and nanoparticles

The latest and most innovative FFF system designed for highest usability, robustness and data quality

DynaPro Plate Reader III

DynaPro Plate Reader III by Wyatt Technology

Screening of biopharmaceuticals and proteins with high-throughput dynamic light scattering (DLS)

Efficiently characterize your sample quality and stability from lead discovery to quality control

particle analyzers
Loading...

Most read news

More news from our other portals

All FT-IR spectrometer manufacturers at a glance