Scientists discover new method of observing interactions in nanoscale systems
One common phenomenon in physics is the Fano effect, which occurs when a discrete quantum state - an atom or a molecule - interacts with a continuum state of the vacuum or the host material surrounding it. The Fano effect changes the way an atom or molecule absorbs light or radiation, said Sasha Govorov, an Ohio University theoretical physicist who is co-author on the paper.
In experiments on nanoscale systems, Heisenberg's uncertainty principle sometimes blocks scientists from observing the Fano effect, Govorov explained. The interaction of the nanoscale system and its continuum state surroundings can't be detected.
But in a new high-resolution laser spectroscopy experiment led by M. Kroner and K. Karrai of the Center of NanoScience at the Ludwig-Maximilians University in Munich, Germany, scientists utilized a new method. They measured photons scattered from a single quantum dot while increasing the laser intensity to saturate the dot's optical absorption. This allowed them to observe very weak interactions, signaled by the appearance of the Fano effect, for the first time.
A theory for the new nonlinear method was developed by Govorov. "Our theory suggests that the nonlinear Fano effect and the method associated with it can be potentially applied to a variety of physical systems to reveal weak interactions," he said.
Scientists also can revisit older experiments on atoms by using modern tools such as highly coherent light sources that are strong enough to reveal such nonlinear Fano-effects, Karrai said. "We can explore new frontiers in quantum optics," he noted.
Other news from the department science
These products might interest you
Most read news
More news from our other portals
See the theme worlds for related content
Topic World Spectroscopy
Investigation with spectroscopy gives us unique insights into the composition and structure of materials. From UV-Vis spectroscopy to infrared and Raman spectroscopy to fluorescence and atomic absorption spectroscopy, spectroscopy offers us a wide range of analytical techniques to precisely characterize substances. Immerse yourself in the fascinating world of spectroscopy!
Topic World Spectroscopy
Investigation with spectroscopy gives us unique insights into the composition and structure of materials. From UV-Vis spectroscopy to infrared and Raman spectroscopy to fluorescence and atomic absorption spectroscopy, spectroscopy offers us a wide range of analytical techniques to precisely characterize substances. Immerse yourself in the fascinating world of spectroscopy!