On the way to the perfect glass
Researchers from the United Kingdom, France and the DUBBLE beamline at the European synchrotron radiation Facility (ESRF) have made a step forward in research on glass. They monitored the change in the structure of zeolites from crystalline solids into an almost perfect glass on heating. They did this by recording vibrations involving groups of atoms in zeolites that were subsequently used to characterise the glass.
Due to their cage structure, zeolites have a low-density structure. They melt at around 900°C, lower temperatures than most similar materials, such as silica (sand), which melts at twice this temperature. If the heating is carried out at a slow rate, low-frequency vibrational modes are responsible for destabilizing the microporous crystalline structure. When the cages collapse, zeolites contract, becoming 60% more dense than in their original form, and they adopt the structure of a glass. "We have discovered the triggering mechanism", says Neville Greaves, principal author of the paper.
The result is a mechanically and chemically stronger glass than the glass used nowadays. "We believe this is the key to the synthesis of perfect glasses", asserts Neville Greaves. Would this mean no more broken wine glasses? "This research could lead to that, but such a glass is still far away. This would also mean making glass invulnerable to water, for instance", he explains. The final aim is to find out the conditions in which the perfect glass forms.
Original publication: Greaves et al.; "Identifying Vibrations That Destabilize Crystals and Characterize the Glassy State"; Science 2005.
Most read news
Other news from the department science

Get the chemical industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.
Most read news
More news from our other portals
See the theme worlds for related content
Topic world Synthesis
Chemical synthesis is at the heart of modern chemistry and enables the targeted production of molecules with specific properties. By combining starting materials in defined reaction conditions, chemists can create a wide range of compounds, from simple molecules to complex active ingredients.

Topic world Synthesis
Chemical synthesis is at the heart of modern chemistry and enables the targeted production of molecules with specific properties. By combining starting materials in defined reaction conditions, chemists can create a wide range of compounds, from simple molecules to complex active ingredients.