After 150 years of research, discovery of how flames burn is finally made by Cornell scientist named Cool
Scientists who study combustion never expected to find enols in flames, and until now their detection was obscured by another related compound that shares the same mass and has long been known to exist in fire. A new technique for studying the compounds in flames has allowed researchers to distinguish between these molecules and has made the discovery possible.
"We've found there is this whole class of previously unsuspected chemistry going on in flames," says Terrill Cool, professor of applied and engineering physics at Cornell.
"It is remarkable that even after 150 years of flame chemistry research new compounds can be found," says Craig Taatjes, a combustion chemistry researcher at Sandia National Laboratory in Livermore, Calif., and lead author of the paper.
While the researchers don't know where the discovery will lead, it offers new directions in efforts to reduce soot and other pollutants in flames, improve fuel cells, and model planetary atmospheres and interstellar chemistry.
Hundreds of chemical species form and turn into other products when fires burn. Enols are one of these intermediary species. To study fire chemistry, researchers use computer models to simulate chemical reactions during combustion. Now, models must be modified to include enols. Also, by understanding the chemistry of burning from beginning to end, researchers may be able to alter pathways and reduce pollutants, such as soot, that come out of flames.
Astronomers have observed ethenol in interstellar space. The new enol findings could provide clues as to how complex organic molecules form in interstellar space.
A common technique used to determine the components in fire involves taking a sample of the chemicals in a flame, giving them an electrical charge and timing how long it takes for the electrically charged molecules, called ions, to reach a detector. Heavier ions take longer, so researchers calculate a molecular mass based on timing. Scientists use the results to make models of chemical reactions that occur during combustion.
Until now, scientists who study combustion never suspected enols existed in flames. They knew of an isomer that shares the same composition and mass, is also an intermediary, but has a different structure, which alters its physical and chemical properties The researchers applied a new technique that reveals both the structure and the mass. The technique relies on the fact that forming ions from different isomers requires different amounts of energy. By making the ions with photons tuned to specific energies, isomers can be distinguished.
"The new technique allows us to look at things people couldn't see before," said Cool. "We weren't looking for ethenol. Nobody had suspected it was there, but then we found it."
Organizations
Other news from the department science
These products might interest you
Multi-Liter Hydrogen Gasgenerator by VICI
Laboratory hydrogen supply redefined
Up to 18 l/min hydrogen with 99.99997% purity and intuitive touchscreen control
CATLAB Catalysis and Thermal Analysis by Hiden Analytical
A system for catalyst characterisation, kinetic and thermodynamic measurements
Integrated Microreactor-Mass Spectrometer for Reaction Testing, TPD/R/O and Pulse Chemisorption.
Get the chemical industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.