Miniature Doughnuts: Colloid Crystals as Molds for Nanorings
Werner Goedel and Feng Yan from the Technical University in Chemnitz have developed a new 'three-dimensional' strategy in which crystals act as a sort of mold for the production of rings. First, micrometer-sized spheres are slurried in a solvent and, by centrifuging, pressed in form of regularly packed so-called colloid crystal. This just has to be dried and the 'mold' is complete. In the next step, the scientists infiltrate the mold with a polymer solution, such as polystyrene in chloroform. Their special trick is to only partially fill the form. The liquid then doesn't sink to the bottom; instead, it creeps into the tiny crevices around the contact points between the spheres and collects in the form of little rings. This phenomenon is caused by capillary forces. If the solvent is then evaporated, the polystyrene stays behind in the crevices as a solid. In the final step, the researchers dissolve the spheres. The tiny polystyrene rings of uniform shape and size left behind are reminiscent of doughnuts. The rings can be made of a number of different materials and their size can be varied by changing the diameter of the spheres that are used. The researchers were thus able to produce mini-'doughnuts' of different polymers and ceramics and vary the outer diameter between about 400 nm and 150 nm and the inner diameter between 150 and 50 nm.
"Our new process is also very interesting," says Goedel, "because we do not produce the little rings conventionally one by one on a flat support, but all at once in a three-dimensional mold. This new method dramatically improves the space-time yield."
Other news from the department science
These products might interest you
Spinsolve Benchtop NMR by Magritek
Spinsolve Benchtop NMR
Spinsolve is a revolutionary multinuclear NMR spectrometer that provides the best performance
Eclipse by Wyatt Technology
FFF-MALS system for separation and characterization of macromolecules and nanoparticles
The latest and most innovative FFF system designed for highest usability, robustness and data quality
HYPERION II by Bruker
FT-IR and IR laser imaging (QCL) microscope for research and development
Analyze macroscopic samples with microscopic resolution (5 µm) in seconds
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.