Nanoscopic Lamps
Lipid-coated nanocrystals as local light sources for the fluorescence stimulation of specifically bound proteins
At the core of the new device are nanocrystals made of semiconducting materials. The research team headed by Horst Vogel at the Swiss Federal Institute of Technology in Lausanne (EPFL) selected green-fluorescing crystals of cadmium selenide, which they coated with a thin layer of lipid molecules like those found in cell membranes. The lipid layer protects the nanocrystals from exterior influences and makes them water-soluble without impeding their fluorescence. The lipid layers also have a particular advantage compared to other coatings -- they can easily be equipped with biochemical functions.
In order to test the potential of their concept, the EPFL team equipped the coated crystals with two different types of molecular "hooks", which each specifically bind only one type of "eye". The scientists "printed" a two-dimensional microscopic pattern of special protein complexes onto a glass plate. These complexes carry the eyes (the protein streptavidin) that correspond to the first type of hook (the vitamin biotin). The luminescent crystals then bind selectively to the printed pattern. "Our tiny lamps can also be incorporated into defined structures relatively easily and with micrometer precision," says Vogel, " which is necessary for analysis with DNA or protein chips."
This is where the second hook (nitrilotriacetic acid) comes into play; it can be used to "fish" for marked analytical molecules. As an example, the researchers placed a red fluorescing protein that carries the appropriate eye (hexahistidine) on the glass plate. The protein immediately bonded to the crystal. When the luminescent crystals were then irradiated with light of a certain wavelength, they entered an excited state. Normally, they would re-emit this energy as green fluorescence; instead, the "nanolamps" transfer their energy packets directly onto the attached proteins.
This energy is exactly what the proteins need to get excited themselves. As they return to their ground state, the proteins emit this energy as red fluorescence, which can be detected. The crucial trick is this: the radiation-free energy transfer from a nanolamp to the proteins only occurs when the distance between them is less than 10 nm. "Only specifically bound proteins are thus made to fluoresce," says Vogel, "such a high sensitivity can not be attained with conventional light sources."
Most read news
Other news from the department science
These products might interest you
Dursan by SilcoTek
Innovative coating revolutionizes LC analysis
Stainless steel components with the performance of PEEK - inert, robust and cost-effective
OCA 200 by DataPhysics
Using contact angle meter to comprehensively characterise wetting behaviour, solids, and liquids
With its intuitive software and as a modular system, the OCA 200 answers to all customers’ needs
Tailor-made products for specific applications by IPC Process Center
Granulates and pellets - we develop and manufacture the perfect solution for you
Agglomeration of powders, pelletising of powders and fluids, coating with melts and polymers
Get the chemical industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.