Cheap and safe electro-catalysts for fuel cells
In a study the team from Surrey worked with colleagues from Queen Mary University of London to create low-cost carbon based electro-catalysts for anion exchange membrane fuel cells. The catalyst helped to achieve a power density performance of 703 watts per square centimetre squared (mW cm-2) from the fuel cells - this compares to a performance of just 50 mW cm-2 from previous studies in this area.
The catalysts were made by using a cheap clay material called Halloysite as the template, urea as the nitrogen source and furfural (an organic chemical that can be produced from oats, wheat bran or sawdust) as the carbon source. This was then processed into a fine black powder and used as nitrogen-doped carbon electro-catalyst.
The project was supported by the Engineering and Physical Sciences Research Council's SUPERGEN Hydrogen and Fuel Cell Hub.
Fuel cells are currently used as a low carbon energy technology for electricity generation in transportation and stationary applications, but the use of precious-metal-based catalysts, especially platinum, makes the technology expensive and less sustainable.
Dr Qiong Cai, Senior Lecturer at the University of Surrey, said: "We are delighted with the results of our non-metal electro-catalysts, which shows what can be achieved with such low-cost carbon materials. We could only achieve this via collaborations with Prof Magdalena Titirici (Professor in Sustainable Materials Chemistry at QMUL) who provided advice in material synthesis, and Professor John Varcoe's team (Professor of Materials Chemistry at the University of Surrey) who provided the high-performance anion-exchange membranes and ionomers and supported the test of these materials in the anion-exchange membrane fuel cells.
"We believe that more work needs to be done, but our work demonstrates that low cost catalysts can give high performances in fuel cells and can help reduce the impact of climate change on our planet."
Original publication
Most read news
Original publication
Yaxiang Lu and Lianqin Wang and Kathrin Preuß and Mo Qiao and Maria-Magdalena Titirici and John Varcoe and Qiong Cai; "Halloysite-derived nitrogen doped carbon electrocatalysts for anion exchange membrane fuel cells"; J Power Sources; 2017
Topics
Organizations
Other news from the department science
These products might interest you
Multi-Liter Hydrogen Gasgenerator by VICI
Laboratory hydrogen supply redefined
Up to 18 l/min hydrogen with 99.99997% purity and intuitive touchscreen control
CATLAB Catalysis and Thermal Analysis by Hiden Analytical
A system for catalyst characterisation, kinetic and thermodynamic measurements
Integrated Microreactor-Mass Spectrometer for Reaction Testing, TPD/R/O and Pulse Chemisorption.
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.