Hydrogen power moves a step closer
Lancaster University
Dr Manus Hayne from the Department of Physics said: “For research to progress, innovation in both materials development and device design is clearly needed.”
The Lancaster study, which formed part of the PhD research of Dr Sam Harrison, and is published in Scientific Reports, provides the basis for further experimental work into the solar production of hydrogen as a renewable fuel. It demonstrates that the novel use of nanostructures could increase the maximum photovoltage generated in a photoelectrochemical cell, increasing the productivity of splitting water molecules.
Dr Hayne said: “To the authors’ best knowledge, this system has never been investigated either theoretically or experimentally, and there is huge scope for further work to expand upon the results presented here.”
Fossil fuels accounted for almost 90% of energy consumption in 2015, with absolute demand still increasing due to a growing global population and increasing industrialisation.
Dr Manus Hayne said: “Fossil-fuel combustion releases carbon dioxide into the atmosphere, causing global climate change, and there is only a finite amount of them available for extraction. We clearly need to transition to a renewable and low-greenhouse-gas energy infrastructure, and renewable hydrogen is expected to play an important role.”
Photovoltaic solar cells are currently used to convert sunlight directly into electricity but solar hydrogen has the advantage that it is easily stored, so it can be used as and when needed. Hydrogen is also very flexible, making it highly advantageous for remote communities. It can be converted to electricity in a fuel cell, or burnt in a boiler or cooker just like natural gas. It can even be used to fuel aircraft.
Original publication
Other news from the department science
Get the chemical industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.