Water mapping around solutes
Method can now be applied in real time
Fundamental biological processes such as enzymatic catalysis or molecular binding occur in aqueous phase. Calorimetry serves as a powerful biophysical tool to study the molecular recognition and stability of biomolecular systems by measuring changes in thermodynamic state variables, e.g. upon protein folding or association, for the purpose of deriving the heat transfer associated with these changes. Calorimetry determines, enthalpy and entropy, which are measures of the heat transfer and disorder in the system.
Calorimetry is restricted to timescales of 1 to 100 seconds. In contrast, spectroscopic processes, which are based on short laser pulses, are able to perform measurements on the time scale of a millionth or a billionth of a second. The Bochum-based chemists showed that both approaches are complimentary.
"By establishing a terahertz calorimeter in a proof of concept experiment, we have achieved the first aim that we had been working on using the Advanced Grant funds from the European Research Council," explains Martina Havenith. In 2016, she was awarded the grant endowed with 2.5 million euros.
Determining the structure of the watery envelopes
A shell of surrounding water molecules, the hydration shell, forms around any dissolved molecule. The solute affects the regular network of hydrogen bridges between the water molecules, causing the water in the hydration shell to behave differently to the free water. The structure of the hydration shell depends on the shape and the chemical composition of the dissolved molecule.
Havenith's team investigated the hydration shell of five different alcohol chains and were able to classify differently structured hydration water by terahertz calorimetry. Exposure to terahertz pulses provides fingerprints of the vibrations within the water network. This, in turn, allows the researchers to deduce fundamental quantities such as entropy and enthalpy.
"The method allows us for the first time to spectroscopically map entropy and enthalpy around solutes, which are crucial parameters to characterize molecular recognition," summarises Havenith.
Original publication
Other news from the department science
Get the chemical industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.