A highly active organic photocatalyst
University of Liverpool
Photocatalytic solar hydrogen production--or water splitting--offers an abundant clean energy source, but only if the energy in sunlight can be harvested effectively. Inorganic materials are better known as water splitting catalysts, but organic catalysts can also be built from cheap abundant elements, such as carbon, nitrogen, and sulphur.
The Liverpool-led team has used a combination of experiment and computation to discover a highly active organic photocatalyst. This also revealed some basic design principles, which may guide us to even better catalysts in the future.
Mr Xiaoyan Wang, the Liverpool Chemistry PhD student who led the experimental work, said: "To achieve high hydrogen evolution rates, you need good water affinity, broad light adsorption, high surface area, and high crystallinity. By introducing all of these features in one material, we got a very active photocatalyst."
Original publication
Xiaoyan Wang, Linjiang Chen, Samantha Y. Chong, Marc A. Little, Yongzhen Wu, Wei-Hong Zhu, Rob Clowes, Yong Yan, Martijn A. Zwijnenburg, Reiner Sebastian Sprick & Andrew I. Cooper; "Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water"; Nature Chemistry; 2018
Original publication
Xiaoyan Wang, Linjiang Chen, Samantha Y. Chong, Marc A. Little, Yongzhen Wu, Wei-Hong Zhu, Rob Clowes, Yong Yan, Martijn A. Zwijnenburg, Reiner Sebastian Sprick & Andrew I. Cooper; "Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water"; Nature Chemistry; 2018
Other news from the department science
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.