How water can split into two liquids below zero
Possibility of two coexisting liquid states in sub-zero water
The DNA origami technique is a kind of nanotech version of playing with Legos, assembling building blocks to create shapes at will. However, it is rather difficult to do it experimentally. The authors instead opted to use simulation to test how tetrahedral molecules -- where the arms of the tetrahedron are composed of six hard cylinders -- stack up and evolve over time.
The authors confirmed previously published ideas suggesting that it is the structure of the monomers and their network which makes it theoretically possible to have a dual liquid phase: one with high-density and one with low-density liquid. This is because the resulting lattice is sufficiently empty to allow for partial interpenetration of molecules. And it is sufficiently flexible to avoid crystallisation into ice, at least on the numerical time scale used in the study.
Then, Ciarella and his colleagues studied the tetrahedral molecules themselves with a recently introduced technique, called Successive Umbrella Sampling, to calculate information related to thermodynamics.
Original publication
Most read news
Original publication
Simone Ciarella, Oleg Gang, Francesco Sciortino; "Toward the observation of a liquid-liquid phase transition in patchy origami tetrahedra: a numerical study"; Eur. Phys. J. E; 2016
Topics
Organizations
Other news from the department science
Get the chemical industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.