New composite material that can cool itself down under extreme temperatures

29-Oct-2018 - United Kingdom

A cutting-edge material, inspired by nature, that can regulate its own temperature and could equally be used to treat burns and help space capsules withstand atmospheric forces is under development at the University of Nottingham.

"A major challenge in material science is to work out how to regulate man-made material temperature as the human body can do in relationship to its environment," explains lead author Dr Mark Alston, Assistant Professor in Environmental Design, from the Faculty of Engineering.

The research used a network of multiple microchannels with active flowing fluids (fluidics) as a method and proof of concept to develop a thermally-functional material made of a synthetic polymer. The material is enhanced with precise control measures that can switch conductive states to manage its own temperature in relationship to its environment.

"This bio-inspired engineering approach advances the structural assembly of polymers for use in advanced materials. Nature uses fluidics to regulate and manage temperature in mammals and in plants to absorb solar radiation though photosynthesis and this research used a leaf-like model to mimic this function in the polymer."

Dr Alston adds: "This approach will result in an advanced material that can absorb high solar radiation, as the human body can do, to cool itself autonomously whatever the environment it is placed in. A thermally-functional material could be used as a heat regulation system for burn injuries to cool skin surface temperature and monitor and improve healing."

This kind of heat flow management could also prove invaluable in space flight where high solar loads can cause thermal stresses on the structural integrity of space capsules.

By regulation of the structural material temperature of the vehicle, this will not only advance structural properties but could also generate useful power. This thermal energy could be removed from the re-circulated fluid system to be stored in a reservoir tank on board the capsule. Once captured, the energy could be converted into electrical energy or to heat water for use by the crew.

The experimental side of this research is laboratory-based and has been developed in collaboration with UK Government research institute: Scientific Research Facilities Council (SRFC). The next steps for the research are to secure funding for a demonstrator scale-up to present to aerospace manufacturing and to identify an industrial partner.

Original publication

Other news from the department science

These products might interest you

Spinsolve Benchtop NMR

Spinsolve Benchtop NMR by Magritek

Spinsolve Benchtop NMR

Spinsolve is a revolutionary multinuclear NMR spectrometer that provides the best performance

Eclipse

Eclipse by Wyatt Technology

FFF-MALS system for separation and characterization of macromolecules and nanoparticles

The latest and most innovative FFF system designed for highest usability, robustness and data quality

HYPERION II

HYPERION II by Bruker

FT-IR and IR laser imaging (QCL) microscope for research and development

Analyze macroscopic samples with microscopic resolution (5 µm) in seconds

FT-IR microscopes
Loading...

Most read news

More news from our other portals

So close that even
molecules turn red...