Champagne owes its taste to the finely tuned quality of its bubbles
annca; pixabay.com; CC0
Gérard Liger-Belair
In the first part of the Special Topic issue, Gérard Liger-Belair from CNRS in Reims, France, has created a model to describe, in minute detail, the journey of the gas contained in each bubble. It starts from the yeast-based fermentation process in grapes, which creates CO2, and goes all the way to the nucleation and rise of gaseous CO2 bubbles in the champagne flute. It also includes how the CO2 within the sealed bottle is kept in a form of finely tuned equilibrium and then goes into the fascinating cork-popping process.
The second part of this Special Issue is a tutorial review demystifying the process behind the collapse of bubbles. It is mainly based on recent investigations conducted by a team of fluid physicists from Pierre and Marie Curie University, in Paris, France, led by Thomas Séon. When a champagne bubble reaches an air-liquid interface, it bursts, projecting a multitude of tiny droplets into the air, creating an aerosol containing a concentration of wine aromas.
Most read news
Other news from the department science
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.