Scientists build bacteria-powered battery on single sheet of paper

23-Dec-2016 - USA

Instead of ordering batteries by the pack, we might get them by the ream in the future.

Seokheun

Researchers at Binghamton University, State University of New York have created a bacteria-powered battery on a single sheet of paper that can power disposable electronics.

Seokheun

Researchers at Binghamton University, State University of New York have created a bacteria-powered battery on a single sheet of paper that can power disposable electronics.

Seokheun
Seokheun

Researchers at Binghamton University, State University of New York have created a bacteria-powered battery on a single sheet of paper that can power disposable electronics. The manufacturing technique reduces fabrication time and cost, and the design could revolutionize the use of bio-batteries as a power source in remote, dangerous and resource-limited areas.

"Papertronics have recently emerged as a simple and low-cost way to power disposable point-of-care diagnostic sensors," said Assistant Professor Seokheun "Sean" Choi, who is in the Electrical and Computer Engineering Department within the Thomas J. Watson School of Engineering and Applied Science. He is also the director of the Bioelectronics and Microsystems Lab at Binghamton.

"Stand-alone and self-sustained, paper-based, point-of-care devices are essential to providing effective and life-saving treatments in resource-limited settings," said Choi.

On one half of a piece of chromatography paper, Choi and PhD candidate Yang Gao, who is a co-author of the paper, placed a ribbon of silver nitrate underneath a thin layer of wax to create a cathode. The pair then made a reservoir out of a conductive polymer on the other half of the paper, which acted as the anode. Once properly folded and a few drops of bacteria-filled liquid are added, the microbes' cellular respiration powers the battery.

"The device requires layers to include components, such as the anode, cathode and PEM (proton exchange membrane)," said Choi. "[The final battery] demands manual assembly, and there are potential issues such as misalignment of paper layers and vertical discontinuity between layers, which ultimately decrease power generation."

Different folding and stacking methods can significantly improve power and current outputs. Scientists were able to generate 31.51 microwatts at 125.53 microamps with six batteries in three parallel series and 44.85 microwatts at 105.89 microamps in a 6x6 configuration.

It would take millions of paper batteries to power a common 40-watt light bulb, but on the battlefield or in a disaster situation, usability and portability is paramount. Plus, there is enough power to run biosensors that monitor glucose levels in diabetes patients, detect pathogens in a body or perform other life-saving functions.

"Among many flexible and integrative paper-based batteries with a large upside, paper-based microbial fuel cell technology is arguably the most underdeveloped," said Choi. "We are excited about this because microorganisms can harvest electrical power from any type of biodegradable source, like wastewater, that is readily available. I believe this type of paper biobattery can be a future power source for papertronics."

The innovation is the latest step in paper battery development by Choi. His team developed its first paper prototype in 2015, which was a foldable battery that looked much like a matchbook. Earlier this year they unveiled a design that was inspired by a ninja throwing star.

Original publication

Other news from the department science

These products might interest you

SprayMaster inspex

SprayMaster inspex by LaVision

Quality Control for Your Spraying Process Through Digital Spray and Particle Analysis

Reliable, Automated, Digital - The Geometry Measurement of Your Spraying Process in Real Time

spray analysis systems
VEGAPULS | VEGABAR | VEGASWING

VEGAPULS | VEGABAR | VEGASWING by VEGA Grieshaber

Cyber-safe level measurement - here's how it works

Find out more about the unique sensor for liquid and solid media

level measurement technology
FireSting-PRO

FireSting-PRO by PyroScience

New fiber optic measuring device: Precise measurements even in the smallest volumes

Measure pH, oxygen and temperature even under sterile conditions

measuring instruments
Loading...

Most read news

More news from our other portals

All FT-IR spectrometer manufacturers at a glance

See the theme worlds for related content

Topic World Battery Technology

The topic world Battery Technology combines relevant knowledge in a unique way. Here you will find everything about suppliers and their products, webinars, white papers, catalogs and brochures.

25+ products
150+ companies
30+ whitepaper
20+ brochures
View topic world
Topic World Battery Technology

Topic World Battery Technology

The topic world Battery Technology combines relevant knowledge in a unique way. Here you will find everything about suppliers and their products, webinars, white papers, catalogs and brochures.

25+ products
150+ companies
30+ whitepaper
20+ brochures

Topic world Sensor technology

Sensor technology has revolutionized the chemical industry by providing accurate, timely and reliable data across a wide range of processes. From monitoring critical parameters in production lines to early detection of potential malfunctions or hazards, sensors are the silent sentinels that ensure quality, efficiency and safety.

4 products
1 whitepaper
4 brochures
View topic world
Topic world Sensor technology

Topic world Sensor technology

Sensor technology has revolutionized the chemical industry by providing accurate, timely and reliable data across a wide range of processes. From monitoring critical parameters in production lines to early detection of potential malfunctions or hazards, sensors are the silent sentinels that ensure quality, efficiency and safety.

4 products
1 whitepaper
4 brochures