New math tools for new materials
Scientists have long known that the pattern of atoms in a material affects how waves of energy are affected by the material. For example, crystals exhibit various colors because of elements in their atomic structure that absorb certain wavelengths of light and let others pass through. For homogeneous materials, in which the pattern of atoms is regular and uniform in all directions, it's relatively easy to mathematically describe the "wave fields" and other characteristics of the material since the physics are the same anywhere. But for inhomogeneous materials, the physics change depending on where in the material you are, greatly complicating analysis of wave fields and other material properties.
Milton uses analytic functions to solve for these complicated materials. Analytic functions include the quadratic and trigonometric equations taught in many high school math classes. Milton uses higher-level versions of these functions to solve for "analytic materials," adding to the previously-limited mathematical toolset scientists had available for understanding inhomogeneous materials.
Milton's work opens up a large class of materials to analysis as scientists explore the possibilities of what analytical materials can do. Milton says they may be combined into "metamaterials" capable of channeling energy waves any way the researcher desires. Metamaterials could be used to bend energy waves to hide objects from light waves on up to possibly earthquake waves. "The doors to studying analytic materials are now open," Milton says.
Original publication
Original publication
Other news from the department science
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.