Making some of the world's most durable materials corrosion-resistant
So impressive is their perceived durability, that borides are used as coatings for surfaces that must survive the harshest environments -- from the inside of combustion engines to cutting tools for hard metals. But, according to Michel Barsoum, PhD, distinguished professor in Drexel's College of Engineering, we can make borides better.
"This discovery is quite significant because it is the first example in the history of mankind of a transition metal boride that is quite oxidation resistant," said Barsoum, who heads Drexel's MAX/MXene Research Group in the Department of Materials Science and Engineering.
To make their boride material, called molybdenum aluminum boride (MoAlB), Barsoum and his team combined a molybdenum-boron lattice with a double layer of aluminum to produce a material that is durable enough to resist oxidation at extremely high temperatures. The key to this remarkable characteristic is the material's nanolaminated structure with alternating layers of molybdenum boride and aluminum -- a form the Drexel group has established a reputation for working with since its creation of MAX phases two decades ago.
"This resistance to oxidation is possible because of the presence of aluminum in layers between molybdenum and boron layers," Barsoum said. "When heated to high temperatures in air the aluminum atoms selectively diffuse to the surface and react with oxygen -- forming a surface aluminum oxide, or alumina, protective layer that slows down further oxidation considerably. So the material forms its own protective coating."
Upon testing, the group also found that the material retains its high conductivity to elevated temperatures. Its melting point has yet to be determined, but preliminary results have shown it to be greater than 1400 degrees Celsius. Barsoum speculates that because of these promising results, his team's work has now laid the foundation for the development of ultrahigh melting point borides that are also oxidation resistant.
"Now we know we're looking in the right place to make materials with this impressive set of properties," said Sankalp Kota, a doctoral student in Barsoum's research group and the paper's first author. "Most people were trying to make the binary borides -- materials with two elements -- oxidation resistant by adding other phases and coatings. One reason we have been this successful at making materials with interesting properties has to do with the number of elements one starts with. With only two elements, it is difficult; with three or higher, the chance of producing a material with a new combination of properties is greater."
Original publication
Most read news
Original publication
Sankalp Kota, Eugenio Zapata-Solvas, Alexander Ly, Jun Lu, Omar Elkassabany, Amanda Huon, William E. Lee, Lars Hultman, Steve J. May & Michel W. Barsoum; "Synthesis and Characterization of an Alumina Forming Nanolaminated Boride: MoAlB"; Scientific Reports; 2016
Organizations
Other news from the department science
These products might interest you
Dursan by SilcoTek
Innovative coating revolutionizes LC analysis
Stainless steel components with the performance of PEEK - inert, robust and cost-effective
OCA 200 by DataPhysics
Using contact angle meter to comprehensively characterise wetting behaviour, solids, and liquids
With its intuitive software and as a modular system, the OCA 200 answers to all customers’ needs
Tailor-made products for specific applications by IPC Process Center
Granulates and pellets - we develop and manufacture the perfect solution for you
Agglomeration of powders, pelletising of powders and fluids, coating with melts and polymers
Get the chemical industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.