Reproducibility does not come easily

Independently developed codes – equivalent results

11-Apr-2016 - Germany

Scientists from IFW Dresden teamed up with colleagues from over 30 universities and institutes to investigate to what extent quantum simulations of material properties agree when they are performed with different software, independently coded. Thanks to an online collaboration, they successfully demonstrated that the most recent generations of codes agree well, in contrast to earlier generations.

Reproducibility does not come easily

It's a corner stone of science: independent yet identical experiments should produce the same results. Only in this way can science identify ‘laws’, which lead to new insight and sometimes to new technologies. However, several recent studies have pointed out that such reproducibility does not always come spontaneously. In scientific areas as diverse as psychology research and genetic research, cases were identified where repeating previous experiments led to very different results. Even predictions by computer codes require caution, since the way in which theoretical models are implemented may affect simulation results. This is a reason for concern in any field of research that critically depends on computer simulations. For the study and design of materials, for instance, there are several independently coded software packages available based on quantum physics. They are moreover being used increasingly often in automated procedures with limited human supervision. It is therefore essential to know to what extent predicted materials properties depend on the code that has been used.

Online collaboration brings experts together

Despite the need for reliable property predictions of materials, the reproducibility of quantum simulations had not been investigated systematically before. This is mainly because there is no single person sufficiently skilled in all existing codes. Scientists from IFW Dresden therefore joined forces with more than 60 colleagues, bringing together the know-how of over 30 prominent institutions. The researchers investigated 40 different methods to describe the influence of pressure in 71 different crystals. Due to the highly international composition of the team, discussions and collaboration were mainly conducted via online tools – similarly to the way people collaborate to write Wikipedia.

The team can now demonstrate that, although a few of the older methods clearly yield deviating results, predictions by recent codes are equivalent. This includes a method with about 600,000 lines of code developed at IFW Dresden. Moreover, the authors define a quality criterion that allows the verification of future software developments against their extensive database. New test data are continuously added to a publicly available website (http://molmod.ugent.be/DeltaCodesDFT). The researchers involved hope that their work will contribute to higher standards for materials property simulations, and that it will facilitate the development of improved simulation codes and methods.

Original publication

Other news from the department science

These products might interest you

Limsophy

Limsophy by AAC Infotray

Optimise your laboratory processes with Limsophy LIMS

Seamless integration and process optimisation in laboratory data management

laboratory information management systems
ERP-Software GUS-OS Suite

ERP-Software GUS-OS Suite by GUS

Holistic ERP solution for companies in the process industry

Integrate all departments for seamless collaboration

software
LAUDA.LIVE

LAUDA.LIVE by LAUDA

LAUDA.LIVE - The digital platform for your device management

Comprehensive fleet management options for every LAUDA device - with and without IoT connectivity

laboratory software
ZEISS ZEN core

ZEISS ZEN core by Carl Zeiss

ZEISS ZEN core - Your Software suite for connected microscopy in laboratory and production

The comprehensive solution for imaging, segmentation, data storage and analysis

microscopy software
ACD Spectrus Platform

ACD Spectrus Platform by ACD/Labs

Software for Analytical Data Handling in R&D

Standardized Analytical Data Processing & Knowledge Management

data management software
Loading...

Most read news

More news from our other portals

All FT-IR spectrometer manufacturers at a glance