New technique offers strong, flawless 3-D printed ceramics
HRL Laboratories, LLC
Zak Eckel and colleagues were able to improve upon these processes by using silicon- and oxygen-based polymers that, upon polymerization, trap the UV light so that additives aren't needed for the UV curing steps. Once the polymer is printed, the part is heated to a high temperature to burn off the oxygen atoms, thus forming a highly dense and strong silicon carbide product. Using electron microscopy to analyze the end product, the researchers detected no porosity or surface cracks. Further tests reveal that the ceramic material can withstand temperatures of 1,400⁰ Celsius (2552⁰ Fahrenheit) before experiencing cracking and shrinkage. The authors note that these developments, which also create a more efficient ceramic-production process, hold important implications for numerous high-temperature applications, such as in hypersonic vehicles and jet engines.
Original publication
Other news from the department science
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.