Protons and antiprotons appear to be true mirror images
"This is an important issue," says Stefan Ulmer, who led the research, "because it helps us to understand why we live in a universe that has practically no antimatter, despite the fact that the Big Bang must have led to the creation of both. If we had found violations of CPT, it would mean that matter and antimatter might have different properties - for example that antiprotons might decay faster than protons - but we have found within quite strict limits that the charge-to-mass ratios are the same."
To perform the research, the team received antiprotons and negative hydrogen ions - as a proxy for protons - from the Antiproton Decelerator, and then trapped single antiproton-hydrogen ion pairs in a magnetic Penning trap, decelerating them to ultra-low energies. They then measured the cyclotron frequency of the pairs and compared them to find how similar they were. "What we found," says Ulmer, "is that the charge-to-mass ratio is identical to within just 69 parts per trillion." This measurement has four times higher energy resolution than previous measurements of proton-antiproton pairs, and further constrains the possibility of violations of CPT invariance. "Ultimately," he says, "we plan to achieve measurements that are at least ten or a hundred times more precise than the current standard."
The work also has implications for what is known as the weak equivalence principle - the idea that all particles will be affected by gravity in the same way, regardless of their mass and charge. The team used their findings to calculate that within about one part per million, antimatter and matter behave in the same way with respect to gravity.
According to BASE member Christian Smorra, "There are many reasons to believe in physics beyond the standard model, including the mystery of dark matter and, of course, the imbalance between matter and antimatter. These high-precision measurements put important new constraints and will help us to determine the direction of future research."
Most read news
Other news from the department science
Get the chemical industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.