Atoms queue up for quantum computer networks
Photo: Ola Jakup Joensen, Niels Bohr Institute
Atoms and light linked together
When light is transmitted through the glass fiber thread, the light will also move along the surface because the fiber is thinner than wavelength of the light. This creates strong interaction between the light and the atoms sitting securely above the surface of the fiber.
"We have developed a method where we can measure the number of atoms. We send two laser beams with different frequencies through the glass fiber. If there were no atoms on the fiber, the speed of light would be the same for both light beams. However, the atoms affect the two frequencies differently and by measuring the difference in the speed of light for the two light beams on each side of the atoms' absorption lines, you can measure the number of atoms along the fiber. We have shown that we can hold 2,500 atoms with an uncertainty of just eight atoms," says Jürgen Appel.
These are fantastic results. Without this method, you would have to use resonant light (light that the atoms absorb) and then you would scatter photons, which would kick the atoms out of the trap, says Jürgen Appel and explains that with this new method they can measure and control the atoms so that only 14 percent are kicked out of the trap and are lost.
"Our resolution is only limited by the natural quantum noise (the laser light's own minimal fluctuations) so our method could be used for so-called entangled states of atoms along the fiber. Such an entangled system with strongly interacting atoms and light is of great interest for future quantum computer networks," notes Jürgen Appel.
Other news from the department science
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.