Efficient and robust
Freiburg Physicists show why quantum transport can be close to optimal even in disordered molecular structures
Quantum transport plays an important role in photosynthesis. It is based on a sensitive state that leads to constructive interference, causing waves to overlap and reinforce each other. Preconditions for this state are typically a well-controlled environment and very low temperatures. With the help of theoretical models and complex network analyses, the Freiburg scientists have now succeeded in identifying key geometric properties that enable constructive interference even in disordered media like molecular structures. In particular, dividing the medium into active and inactive components makes the transport efficient as well as robust against thermal fluctuations, i.e., motion of the individual components. Combining these properties as a construction principle would allow scientists to produce molecular structures that achieve optimal efficiency even when control over the precise geometry is suboptimal.
The study is the result of an interdisciplinary project conducted by two junior research groups at FRIAS that merged knowledge of quantum systems and molecular processes with expertise in the analysis of complex networks. The study underlines the necessity of interdisciplinary cooperation for tackling and solving challenging scientific problems.
Original publication
Other news from the department science
Get the chemical industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.