Potential carbon capture role for new CO2-absorbing material
It focuses on the metal organic framework NOTT-202a, which has a unique honeycomb-like structural arrangement and can be considered to represent an entirely new class of porous material.Most importantly, the material structure allows selective adsorption of carbon dioxide — while other gases such as nitrogen, methane and hydrogen can pass back through, the carbon dioxide remains trapped in the materials nanopores, even at low temperatures.
Lead researcher Professor Martin Schröder, in the University's School of Chemistry, said: "The unique defect structure that this new material shows can be correlated directly to its gas adsorption properties. Detailed analyses via structure determination and computational modelling have been critical in determining and rationalising the structure and function of this material."
The research team — which is included Dr Sihai Yang, Professor Alexander Blake, Professor Neil Champness and Dr Elena Bichoutskaia at Nottingham — collaborated on the project with colleagues at the University of Newcastle and Diamond Light Source and STFC Daresbury Laboratory.
NOTT-202a consists of a tetra-carboxylate ligands — a honeycomb like structure made of a series of molecules or ions bound to a central metal atom — and filled with indium metal centres. This forms a novel structure consisting of two interlocked frameworks.
State-of-the-art X-ray powder diffraction measurements at Diamond Light Source and advanced computer modelling were used to probe and gain insight into the unique carbon dioxide capturing properties of the material.
Other news from the department science
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.