How much microplastic are you drinking?
New tool can tell you in minutes
Detecting these plastics typically requires skilled personnel and expensive equipment. Dr. Yang’s team wanted to make detection faster, more accessible and more reliable.
They created a small, biodegradable, 3D-printed box containing a wireless digital microscope, green LED light and an excitation filter. To measure the plastics, they customized MATLAB software with machine-learning algorithms and combined it with image capture software.
The result is a portable tool that works with a smartphone or other mobile device to reveal the number of plastic particles in a sample. The tool only needs a tiny liquid sample – less than a drop of water – and makes the plastic particles glow under the green LED light in the microscope to visualize and measure them. The results are easy to understand, whether by a technician in a food processing lab or just someone curious about their morning cup of coffee.
For the study, Dr. Yang’s team tested disposable polystyrene cups. They filled the cups with 50 mL of distilled, boiling water and let it cool for 30 minutes. The results showed that the cups released hundreds of millions of nano-sized plastic particles, roughly one-hundredth the width of a human hair and smaller.
“Once the microscope in the box captures the fluorescent image, the app matches the image’s pixel area with the number of plastics,” said co-author Haoming (Peter) Yang, a master’s student in the faculty of land and food systems. “The readout shows if plastics are present and how much. Each test costs only 1.5 cents.”
The tool is currently calibrated to measure polystyrene, but the machine-learning algorithm could be tweaked to measure different types of plastics like polyethylene or polypropylene. Next, the researchers aim to commercialize the device to analyze plastic particles for other real-world applications.
The long-term impacts of ingesting plastic from beverages, food, and even from airborne plastic particles are still being studied but show cause for concern.
“To reduce plastic ingestion, it is important to consider avoiding petroleum-based plastic products by opting for alternatives like glass or stainless steel for food containers. The development of biodegradable packaging materials is also important for replacing traditional plastics and moving towards a more sustainable world,” said Dr. Yang.
Original publication
Haoxin Ye, Xinzhe Zheng, Haoming Yang, Matthew D. Kowal, Teresa M. Seifried, Gurvendra Pal Singh, Krishna Aayush, Guang Gao, Edward Grant, David Kitts, Rickey Y. Yada, Tianxi Yang; "Cost-Effective and Wireless Portable Device for Rapid and Sensitive Quantification of Micro/Nanoplastics"; ACS Sensors, 2024-8-12
Most read news
Original publication
Haoxin Ye, Xinzhe Zheng, Haoming Yang, Matthew D. Kowal, Teresa M. Seifried, Gurvendra Pal Singh, Krishna Aayush, Guang Gao, Edward Grant, David Kitts, Rickey Y. Yada, Tianxi Yang; "Cost-Effective and Wireless Portable Device for Rapid and Sensitive Quantification of Micro/Nanoplastics"; ACS Sensors, 2024-8-12
Topics
Organizations
Other news from the department science
Get the chemical industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.