Unveiling challenges in green hydrogen production
International researcher team reveals adverse effects of hydrogen on catalysts
Effects of hydrogen on catalytic performance
Previous research primarily focused on optimizing catalyst performance, without atomic-level analysis. However, the Max Planck team took a different approach. “Our findings revealed that impurities do get introduced during synthesis. Surprisingly, we discovered that boron impurities could enhance the catalyst's performance by expanding its lattice structure. However, we observed that the catalytic activity decreases after a certain amount of hydrogen is produced and wanted to understand why this happens to find ways to maintain the performance”, explains Prof. Baptiste Gault, corresponding author of the publication and head of the group “Atom Probe Tomography” at MPIE. Atom probe tomography and simulations based on density functional theory revealed that as hydrogen accumulates on the catalyst's surface, boron is gradually removed from the lattice structure. This interaction deteriorates the catalyst's performance, by decreasing the concentration of boron dopants.
Next steps: Protecting catalytic dopants from hydrogen
“Our findings show that it is not enough to increase the catalytic activity with Boron as a dopant. We must find solutions to shield Boron inside the catalyst’s lattice structure from the hydrogen produced on the surface of the catalyst”, says Prof. Se-Ho Kim, second corresponding author of the publication, former postdoctoral researcher at MPIE and now assistant professor at Korea University.
This research was made possible through funding from the European Research Council as part of the Shine project, led by Gault. It represents a major step forward in our understanding of green hydrogen production, paving the way for a more sustainable and cost-effective future in renewable energy.
Original publication
Original publication
Su-Hyun Yoo, Leonardo Shoji Aota, Sangyong Shin, Ayman A. El-Zoka, Phil Woong Kang, Yonghyuk Lee, Hyunjoo Lee, Se-Ho Kim, Baptiste Gault; "Dopant Evolution in Electrocatalysts after Hydrogen Oxidation Reaction in an Alkaline Environment"; ACS Energy Letters, Volume 8, 2023-7-14
Topics
Organizations
Other news from the department science
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.