Chemists develop new process for the production of ring-shaped molecules
Photocatalysis as the key
"The change we achieved in the original ring system is amazing. The insertion of a ring into a ring could serve as a blueprint for further developments," emphasizes Frank Glorius. Dr. Huamin Wang, first author of the paper from the Münster group, adds, "The simple and mild conditions also make this reaction promising for possible applications."
To perform structural editing, at least one chemical bond of the molecular backbone must be selectively cleaved. A modern tool that provides the necessary energy and selectivity is visible-light photocatalysis. The research team used what is known as photoredox catalysis. This branch of photocatalysis uses the transfer of single electrons. In this process, the photocatalyst absorbs the energy of the light irradiation and "activates" the substrate by transferring an electron. "Activation" means that the substrate is made reactive. The use of visible light and photochemical activation allows the development of mild and simple reaction conditions.
In this case, the chemists used an important sulfur-containing molecule, thiophene, as a substrate. In the new process, the carbon-sulfur bond of the thiophene is cleaved eventually. The second reactant - a molecule consisting of a strained four-membered ring (bicyclobutane) - is inserted between the sulfur and carbon. The conversion is environmentally friendly and atom-economical, meaning that all the atoms of the two starting materials end up in the product.
The team uncovered the underlying mechanism of the new reaction through a close collaboration of experimental and computational chemistry. Frank Glorius' group performed a series of experimental studies to investigate the possible mechanism. In addition, Ken Houk and his group computationally modeled the reaction in detail. In this way, they showed how these reactions occur and why they are highly selective. "Density Functional Theory calculations demonstrated that the photoinduced ring expansion mechanisms of thiophene and benzothiophene proceed via photoredox-induced radical-ion mechanisms", explains postdoc Dr. Huiling Shao.
Original publication
Other news from the department science
Get the chemical industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.