Direct conversion of carbon dioxide into bulk chemicals and liquid fuels
High-efficiency utilization of CO2 facilitates the reduction of CO2 concentration in the global atmosphere and hence the alleviation of the greenhouse effect. The chemical utilization of CO2, which refers to converting CO2 into value-added chemicals and liquid fuels, has a distinct and direct CO2 emission reduction effect, and can alleviate the energy crisis effectively. Using renewable H2 from H2O electrolysis, the direct conversion of CO2 into bulk chemicals and liquid fuels via heterogeneous catalysis may not only solve the problem of hydrogen storage and transportation, but also reduce excessive dependence on fossil resources.

The “CO2 Hydrogenation to Methanol Demonstration Plant” of CNOOC Fudao Ltd. in Dongfang City, Hainan Province, China. This plant has a methanol production capacity of more than 5,000 tonnes/year using the layered double hydroxides derived Cu-based catalyst developed by Shanghai Advanced Research Institute, Chinese Academy of Sciences. They were also developing the industrial technology of CO2 hydrogenation to lower olefins, aromatics, gasoline, jet fuel-range hydrocarbons, and so on.
Chinese Journal of Catalysis
Recently, a team led by Prof. Yuhan Sun and Gao Peng from Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences reported recent efforts by their group aimed at developing high-performance heterogeneous catalysts for the conversion of CO2 and H2 in producing bulk chemicals (methanol, lower olefins, aromatics) and specific-range hydrocarbons (gasoline and jet fuel) with potential industrial applications.
Among the bulk chemicals, methanol is one of the practically important intermediate chemical products, and the catalytic hydrogenation of CO2 to synthesize methanol has been extensively studied. In this study, the team have developed a Cu-based catalyst for CO2 hydrogenation to methanol, exhibiting high stability, product selectivity, and catalytic activity. In 2020, they further used this catalyst and cooperated with CNOOC Fudao Ltd., and China Chengda Engineering Co., Ltd. to conduct a 5000 ton/year industrialization demonstration of CO2 hydrogenation to methanol for approximately 2400 h with a total CO2 conversion higher than 95% as well as the methanol selectivity higher than 97%.
Meanwhile, the group also focused on hydrogenation CO2 to lower olefins, aromatics, gasoline-range and jet fuel-range hydrocarbons with potential industrial applications. They also demonstrate how to simultaneously achieve high target product selectivity and high catalyst stability, and elucidate catalysts structure-performance relationship, the nature of catalysts active sites, and mechanism of the reaction taking place over different catalyst systems for CO2 hydrogenation.
Finally, the challenges and future perspectives for CO2 hydrogenation were discussed and the author proposed that the scaling up of the preparation of catalytic materials as well as the development of high-efficiency reactors must be the focus of future studies in this field to achieve industrialization.
Original publication
Other news from the department science

Get the chemical industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.