Plastic Made of Vanillin
Upcycling with light: Biomass-derived crosslinked polymers
pixabay.com
Biomass is a renewable, often downright cheap raw material that is increasingly of interest for the production of high-performance plastics. However, bio-based plastics also suffer the problem of unsatisfactory recycling. Plastics have to remain reliably stable while they are in use, without the risk of premature deterioration. Recycling should also ideally be upcycling instead of downcycling. The building blocks produced should be convertible to another high-quality material. Ideally, these would be monomers that can subsequently be polymerized again to produce equally high-performance plastics.
To meet this challenge, an interdisciplinary team of researchers from the United states—Jayaraman Sivaguru at the Center for Photochemical Sciences, Bowling Green State University in Bowling Green, Ohio, and Mukund P. Sibi and Dean C. Webster at North Dakota State University in Fargo—have chosen bio-based plastics for which degradation can be triggered by irradiation with light. They were able to develop crosslinked polymers that contain building blocks in their backbone based on vanillin. Vanillin can be produced from material such as lignin, which is a byproduct of cellulose production.
The vanillin derivative developed by the team absorbs light at 300 nm and enters into an excited state. This leads to a chemical reaction that triggers the degradation of the polymer. Because this wavelength is not contained in the spectrum of sunlight that reaches the earth, unplanned degradation is avoided. The researchers were able to recover 60% of the monomers, which could be polymerized again with no loss of quality.
Photodegradable, recyclable, and renewable crosslinked polymers made of biomass resources are a highly promising approach for producing more sustainable plastics. Light-triggered degradation is environmentally friendly and offers the advantage of spatial and temporal control.
Original publication
Other news from the department science
These products might interest you
Eclipse by Wyatt Technology
FFF-MALS system for separation and characterization of macromolecules and nanoparticles
The latest and most innovative FFF system designed for highest usability, robustness and data quality
Spinsolve Benchtop NMR by Magritek
Spinsolve Benchtop NMR
Spinsolve is a revolutionary multinuclear NMR spectrometer that provides the best performance
HYPERION II by Bruker
FT-IR and IR laser imaging (QCL) microscope for research and development
Analyze macroscopic samples with microscopic resolution (5 µm) in seconds
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.