Genes of high temperature superconductivity expressed in 3D materials
©Science China Press
This work is titled as Unconventional high temperature superconductivity in cubic zinc-blende transition metal compounds, recently published in SCIENCE CHINA Physics, Mechanics & Astronomy. The researchers used the group theory, electronic band and slave-boson mean-field method to analysis the symmetries of electron motion and to predict the properties of superconductivity. This is a d-wave superconducting state spontaneously breaking time reversal symmetry and maintaining nodes in diagonal directions.
To be specific, the structure considered in this work is the zinc-blende structure as shown in Figure 1. Under this structure, the local symmetries are the same to the global symmetries, which keeps the degeneracy of the t2g orbitals from the three-dimensional representation of Td group. When the electronic configuration is close to d7, those three orbitals are isolated near the Fermi surface, with strong hopping and antiferromagnetic super-exchange in all the directions, triggering the expression of HTSC "gene". The pairing wave under this environment is d+id, breaking time reversal symmetry. This pairing wave vanishes at the bulk diagonal direction in the Brillouin zone, as the direct analogy of quasi-two-dimensional superconductivity in cuprate. By adopting band structure and mean-field calculation, the electron doped zinc-blende cobalt-oxygen-nitrogen compounds may realize such physics.
This result further enriched the prediction of families of HTSCs according to the "gene" theory. If verified by the following experiments, the "gene" theory would be justified and more HTSCs materials would be found.
Original publication
Other news from the department science
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.