Mapping the Energetic Landscape of Solar Cells
New spectroscopic method
© Vaynzof
“Mapping our Earth’s landscapes was a necessary step for understanding the movement patterns and dynamics of people, animals and water, among other examples”, explains Prof. Vaynzof, research group leader at the Kirchhoff Institute for Physics at Heidelberg University. “Similarly, the movement of electric charges in a solar cell is determined by the energetic landscape within the device.” Until now, visualising these energetic landscapes was so challenging that only rough estimates could be used to study the fundamental processes in organic photovoltaic devices.
The spectroscopic method developed by the Heidelberg researchers can map the energetic landscape on a nanometre scale and can be applied at any point during the solar cell’s lifetime. “The strength of our method lies in its excellent resolution and great versatility”, says Vincent Lami, member of Prof. Vaynzof’s team and the lead author of the study. According to Prof. Vaynzof, their work solves a key problem in the field of organic photovoltaics. “Without mapping the energetic landscapes, it is difficult to understand how and why devices lose energy in the process of converting light into electricity. Now we have a spectroscopic method that allows us to develop new generations of solar cells with reduced energy losses and improved performance”, emphasises the scientist, who heads the “Organic Electronics” research group at the Kirchhoff Institute for Physics and works at the Centre for Advanced Materials of Heidelberg University.
Original publication
Other news from the department science
Most read news
More news from our other portals
See the theme worlds for related content
Topic World Spectroscopy
Investigation with spectroscopy gives us unique insights into the composition and structure of materials. From UV-Vis spectroscopy to infrared and Raman spectroscopy to fluorescence and atomic absorption spectroscopy, spectroscopy offers us a wide range of analytical techniques to precisely characterize substances. Immerse yourself in the fascinating world of spectroscopy!
Topic World Spectroscopy
Investigation with spectroscopy gives us unique insights into the composition and structure of materials. From UV-Vis spectroscopy to infrared and Raman spectroscopy to fluorescence and atomic absorption spectroscopy, spectroscopy offers us a wide range of analytical techniques to precisely characterize substances. Immerse yourself in the fascinating world of spectroscopy!