BASF and TU Berlin launch artificial intelligence cooperation
geralt, pixabay.com, CC0
Machine learning is a key pillar of artificial intelligence. The objective is to analyze large volumes of data to recognize patterns and relationships which can be used to develop prediction models that optimize themselves based on their results. Systems for language recognition or autonomous driving are examples of how machine learning is used in day-to-day applications. “Ultimately, the mathematical models in these everyday examples are similar to those needed in a digitalized laboratory,” explains Dr. Hergen Schultze, head of BASF’s research group Machine Learning and Artificial Intelligence.
“There is no off-the-shelf software for machine learning,” says Dr. Bruno Betoni, who is responsible for BASLEARN at BASF. “Our goal is to develop new basic principles of machine learning for very specific applications in research.” According to Betoni, TU Berlin has a wealth of expertise in this area. He is convinced that this cooperation will help both partners make important progress. “We will benefit enormously from this cooperation with BASF,” says Müller. “It allows us access to huge volumes of real, highly complex data, which we can use to develop new algorithms. The scientific questions being investigated at BASF are extremely interesting and diverse. Such real-life challenges create very exciting and novel research questions that theoreticians sitting at their desks would rarely come up with.”
The application areas for machine learning range from biological systems and research on materials and active ingredients to laboratory automation and dynamic process systems. The joint research work will investigate issues such as the solubility of complex mixtures or dyes as well as predicting the aging process of catalysts. “This may not sound very complicated at first, but unfortunately it is. For example, we know the solubility of individual materials and simple mixtures. However, when there are several components in a formulation it is a different story,” says Schultze. “The more data we use and the better adapted a learning model is, the better it can predict. In turn, our work in the lab becomes more efficient and together we reach our goal more quickly,” says Schultze. “Mathematical models can of course also control laboratory robots and thus carry out experiments,” adds Schultze, citing another application example. Robots could thus take over routine tasks or dealing with hazardous materials, for example, during reactor cleaning.
This cooperation between BASF and TU Berlin can draw upon positive role models: Since 2011, both partners have been jointly running a lab on the campus of TU Berlin which explores the basics of heterogeneous catalysis for raw material change. Furthermore, BASLEARN is not the first cooperation relating to artificial intelligence that BASF has entered into with external researchers, but it is the most extensive. The company is already working with Massachusetts Institute of Technology (MIT) and Stanford University. “Berlin is one of the hotspots for machine learning in Germany,” says Betoni. “This cooperation allows TU Berlin to extend its top position in the area of artificial intelligence,” Müller adds. The cooperation between BASF and TU Berlin could serve here as an incubator for further innovations and as a starting point for cooperation opportunities with highly innovative startups.
Most read news
Other news from the department science
Get the chemical industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.