On the Death of Polymers

Revisiting Termination Rate Coefficients in Radical Homopolymerization

24-Feb-2010 - New Zealand

Although radical polymerization is used in the synthesis of about half the world’s polymers, details of exactly what is going on in the reaction soup in complex industrial settings have been sketchy at best. As the materials enter our lives as, for example, drugs, coatings, fibers and solar cells, controlling their reactions and therefore their properties is extremely important. Scientists in New Zealand have recently addressed a fundamental part of this story by considering termination rate coefficients for a couple of very common reactions, using results from new analytical techniques to revisit our old understanding. They found the way the small polymers (oligomers) in the system move and their speed, i.e., their diffusion behavior, to be the critical factor. This work is published in a special issue of Macromolecular chemistry and Physics, devoted to radical polymerization.

The people responsible, Greg Russell and his colleagues at the University of Canterbury, are experts in polymer kinetics. Russell explains, “The majority of chemists simply try to bring about reactions by mixing different chemicals together under different conditions. However it is also important, especially for those who make chemical products on a large scale, to have precise quantitative descriptions of the speeds at which reactions occur. Chemical kinetics is the field of work that develops such descriptions. It is therefore an area where chemistry and mathematics intersect.”

He goes on to say, “Arguably the hardest nut to crack in the radical polymerization scheme has been the termination reaction. In layman's terms, termination is the fundamental reaction whereby a polymer molecule stops growing larger. A reasonable analogy is human death, the process which ceases human life and thus prevents a human's age from mounting and mounting. In radical polymerization this reaction is diffusion controlled in rate, which means that its speed is determined by how fast the molecules move.” This speed of movement can depend on many factors such as how long the molecule is, the number of obstacles around the polymer, the temperature of the system, and so on. “This is the origin of the complexity of the termination reaction, and is the reason why, after over 60 years of intensive study, it is still not fully understood, not nearly.”

In this work Russell revisited some of the earliest questions about termination. “Recent years have seen the development of highly specialized techniques for measuring termination rate coefficients under precisely controlled conditions. I have taken this information and attempted to see whether it is consistent with systems where many different termination reactions occur at once, as is the case in commercial processes. For the monomer styrene I find there is consistency, but for methyl methacrylate there is not.”

In trying to explain this result, he eliminated most of the conventional views, and came to the conclusion that the answer lies with the oligomers in each system, which seem to have slightly different diffusional behavior.

Original publication: D. R. Tayler, K. Y. van Berkel, M. M. Alghamdi, G. T. Russell, “Termination Rate Coefficients for Radical Homopolymerization of Methyl Methacrylate and Styrene at Low Conversion”; Macromol. Chem. Phys. 2010.

Other news from the department science

These products might interest you

Eclipse

Eclipse by Wyatt Technology

FFF-MALS system for separation and characterization of macromolecules and nanoparticles

The latest and most innovative FFF system designed for highest usability, robustness and data quality

Spinsolve Benchtop NMR

Spinsolve Benchtop NMR by Magritek

Spinsolve Benchtop NMR

Spinsolve is a revolutionary multinuclear NMR spectrometer that provides the best performance

HYPERION II

HYPERION II by Bruker

FT-IR and IR laser imaging (QCL) microscope for research and development

Analyze macroscopic samples with microscopic resolution (5 µm) in seconds

FT-IR microscopes
Loading...

More news from our other portals

So close that even
molecules turn red...

See the theme worlds for related content

Topic world Synthesis

Chemical synthesis is at the heart of modern chemistry and enables the targeted production of molecules with specific properties. By combining starting materials in defined reaction conditions, chemists can create a wide range of compounds, from simple molecules to complex active ingredients.

15+ products
4 whitepaper
15+ brochures
View topic world
Topic world Synthesis

Topic world Synthesis

Chemical synthesis is at the heart of modern chemistry and enables the targeted production of molecules with specific properties. By combining starting materials in defined reaction conditions, chemists can create a wide range of compounds, from simple molecules to complex active ingredients.

15+ products
4 whitepaper
15+ brochures