Buckyballs could keep water systems flowing

06-Mar-2009 - USA

Microscopic particles of carbon known as buckyballs may be able to keep water pipes clear in the same way clot-busting drugs prevent arteries from clogging up. Engineers at Duke University have found that buckyballs hinder the ability of bacteria and other microorganisms to accumulate on the membranes used to filter water in treatment plants. This attribute leads the researchers to believe that coating pipes and membranes with these nanoparticles may prove to be an effective strategy for addressing one of the major problems and costs of treating water.

Duke University

This is a buckyball-treated membrane.

"Just as plaque can build up inside arteries and reduce the flow of blood, bacteria and other microorganisms can over time attach and accumulate on water treatment membranes and along water pipes," said So-Ryong Chae, post-doctoral fellow in Duke's environmental and civil engineering department. The results of his experiments were published March 5, 2009 in the Journal of Membrane Sciences .

"As the bacteria build up on these surfaces, they attract other organic matter, creating a biofilm that slowly builds up over time," Chae continued, "The results of our experiments in the laboratory indicate that buckyballs may be able to prevent this clogging, known as biofouling. The only other options to address biofouling are digging up the pipes and replacing the membranes, which can be expensive and inconvenient."

"Biofouling is viewed as one of the biggest costs associated with membrane-based water treatment systems," said Claudia Gunsch, assistant professor of civil engineering at Duke's Pratt School of Engineering and senior member of the research team. "These membranes have very small pores, so they can get stopped up quickly. If we could increase the time between membrane replacements by 50 percent, for example, that would be a huge cost savings."

According to Chae, the addition of buckyballs to treatment membranes had a two-fold effect. First, treated membranes showed less bacterial attachment than non-treated membranes. After three days, the membranes treated with buckyballs had on average 20 colony forming units, the method by which bacterial colonies are counted.

"In contrast, the number of bacterial colonies on the untreated membrane was too numerous to count," Chae said.

Chae also found that the presence of the buckyballs inhibited respiration, or the ability of the bacteria to use oxygen to fuel its activities.

"As the concentration of buckyballs increased, so did the inhibition of respiration," Chae said. "This respiratory inhibition and anti-attachment suggests that this nanoparticle may be useful as an anti-fouling agent to prevent the biofouling of membranes or other surfaces."

Gunsch said the mechanisms involved are not well-understood. Both Gunsch and Chae believe that since buckyballs are one of the most widely used nanoparticles, additional research is needed to determine if they have any detrimental effects on the environment or to humans. This is one of many issues being studied at Duke's Center for Environmental Implications of Nanotechnology.

Other news from the department science

These products might interest you

NANOPHOX CS

NANOPHOX CS by Sympatec

Particle size analysis in the nano range: Analyzing high concentrations with ease

Reliable results without time-consuming sample preparation

particle analyzers
DynaPro Plate Reader III

DynaPro Plate Reader III by Wyatt Technology

Screening of biopharmaceuticals and proteins with high-throughput dynamic light scattering (DLS)

Efficiently characterize your sample quality and stability from lead discovery to quality control

particle analyzers
Eclipse

Eclipse by Wyatt Technology

FFF-MALS system for separation and characterization of macromolecules and nanoparticles

The latest and most innovative FFF system designed for highest usability, robustness and data quality

Loading...

Most read news

More news from our other portals

All FT-IR spectrometer manufacturers at a glance