Argonne scientists prove unconventional superconductivityin new iron arsenide compounds
Inelastic neutron scattering is sensitive to sign of superconducting gap
"The normal techniques for revealing unconventional superconductivity don't work with these compounds," physicist Ray Osborn said. "Inelastic neutron scattering is so far the only technique that does."
Conventional superconductivity can be explained by a theory developed by Bardeen, Cooper, and Schrieffer (BCS) in 1957. In BCS theory, electrons in a superconductor combine to form pairs, called Cooper pairs, which are able to move through the crystal lattice without resistance when an electric voltage is applied. Even when the voltage is removed, the current continues to flow indefinitely, the most remarkable property of superconductivity, and one that explains the keen interest in their technological potential.
Normally, electrons repel each other because of their similar charge, but, in superconductors, they coordinate with vibrations of the crystal lattice to overcome this repulsion. However, in the iron arsenides, scientists don't believe the vibrational mechanism is strong enough to make them superconducting. This has led theorists to propose that the superconductivity has an unconventional mechanism, perhaps like high temperature copper oxide superconductors. Some iron arsenides are antiferromagnetic, rather than superconducting, so magnetism rather than atomic vibrations might provide the electron glue.
In BCS superconductors, the energy gap between the superconducting and normal electronic states is constant, but in unconventional superconductors the gap varies with the direction the electrons are moving. In some directions, the gap may be zero. The puzzle is the gap does not seem to vary with direction in the iron arsenides. However, theorists have argued in these new compounds, while the size of the gap shows no directional dependence, the sign of the gap is opposite for different electronic states. The standard techniques to measure the gap, such as photoemission, are not sensitive to this change in sign. But inelastic neutron scattering is sensitive. Osborn, along with Argonne physicist Stephan Rosenkranz, led an international collaboration to perform neutron experiments at the ISIS Pulsed Neutron and Muon Source in Great Britain using samples of the new compounds made in Argonne's Materials Science Division, and discovered a magnetic excitation in the superconducting state that can only exist if the energy gap changes sign from one electron orbital to another.
"Our results suggest that the mechanism that makes electrons pair together could be provided by antiferromagnetic fluctuations rather than lattice vibrations," Rosenkranz said. "It certainly gives direct evidence that the superconductivity is unconventional."
Original publication: Nature, Volume 456, pages 930-932.
Other news from the department science
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.