NSF and EPA establish 2 centers for environmental implications of nanotechnology

Centers will focus on environmental effects of nanotechnology and its applications

19-Sep-2008 - USA

The National Science Foundation (NSF) and the U.S. Environmental Protection Agency (EPA) have made awards to establish two Centers for the Environmental Implications of nanotechnology (CEIN). The centers, led by UCLA and Duke University, will study how nanomaterials interact with the environment and with living systems, and will translate this knowledge into risk assessment and mitigation strategies useful in the development of nanotechnology.

"The new centers will provide national and international leadership in the emerging field of environmental nanoscience," said Arden L. Bement, Jr., NSF director. "This is an important addition to the National Nanotechnology Initiative, and builds on earlier discoveries on the environmental implications of nanotechnology made since 2001, when NSF's Center for Biological and Environmental Technologies was established. The new centers are aimed at strengthening our nation's commitment to research on the environmental, health and safety implications of nanomaterials."

The centers will work as a network, connected to other research organizations, industry and government agencies and will emphasize interdisciplinary research and education. Their challenge is to better integrate materials science and engineering with molecular, cellular, organismal and ecological biology and environmental science.

The UCLA CEIN, to be housed at the California NanoSystems Institute on the UCLA campus, will explore the impact of nanomaterials on the environment and on interactions with biological systems at all scales from cellular to ecosystem.

At the Duke University CEIN, researchers plan to define the relationship between a vast array of nanomaterials - from natural to man-made to incidental, byproduct nanoparticles - and their potential environmental exposure, biological effects and ecological consequences. Nanomaterials that are already in commercial use as well as several present in nature will be among the first materials studied.

Traditional toxicity testing relies mainly on a complex set of whole-animal-based toxicity testing strategies. "This approach cannot handle the rapid pace at which nanotechnology-based enterprises are generating new materials and ideas," said Nel, who is also the Director of the UC led-Campus Nanotoxicology Research and Training Program at UCLA. "The CEIN's development of a comprehensive computational risk ranking will allow powerful risk predictions to be made by and for the academic community, industry, the public, and regulating agencies."

At Duke University, "a distinctive element will be the synthesis of information about nanoparticles into a rigorous risk assessment framework, the results of which will be transferred to policy-makers and society at large," said Duke CEIN director Mark Wiesner, Professor of Civil and Environmental Engineering at Duke's Pratt School of Engineering. Wiesner specializes in nanoparticle movement and transformation in the environment.

Other news from the department science

These products might interest you

MS-Präzisionswaagen

MS-Präzisionswaagen by Mettler-Toledo

Trusted Results at Your Fingertips

Capacity from 320 g to 12.2 kg, readability from 1 mg to 100 mg

precision balances
Good Weighing Practice

Good Weighing Practice by Mettler-Toledo

Your Concrete Weighing Quality Assurance Plan

GWP Verification service

services
Precision balances

Precision balances by Ohaus

High-performance precision balances for everyday use in laboratories & industry

From milligram-accurate measurement of small samples to routine weighing in the kilogram range

precision balances
Pioneer PX

Pioneer PX by Ohaus

Never before has a low-cost balance been such a good long-term investment

Accurate results every time - even when exposed to temperature fluctuations & electromagnetic fields

analytical balances
Automatische XPR-Waagen

Automatische XPR-Waagen by Mettler-Toledo

Production of standards, samples and concentrations - fast and reliable

Automate the weighing processes in your laboratory - ideal also for sample prep at chromatography

laboratory balances
Balances analytiques

Balances analytiques by Ohaus

Analytical balances with outstanding weighing performance, as easy to use as a smartphone

These space-saving analytical and semi-micro balances are surprisingly intuitive to use

analytical balances
XPR Precision Balances

XPR Precision Balances by Mettler-Toledo

Fast and Accurate Precision Weighing Even in Difficult Conditions

XPR Precision Balances / Solutions to support you with data management, traceability and regulatory compliance

precision balances
Carepacs

Carepacs by Mettler-Toledo

Professional CarePacs for smooth routine testing

Tweezers, gloves and other accessories for professional weight handling

test weights
Loading...

More news from our other portals

All FT-IR spectrometer manufacturers at a glance

See the theme worlds for related content

Topic world Synthesis

Chemical synthesis is at the heart of modern chemistry and enables the targeted production of molecules with specific properties. By combining starting materials in defined reaction conditions, chemists can create a wide range of compounds, from simple molecules to complex active ingredients.

15+ products
4 whitepaper
15+ brochures
View topic world
Topic world Synthesis

Topic world Synthesis

Chemical synthesis is at the heart of modern chemistry and enables the targeted production of molecules with specific properties. By combining starting materials in defined reaction conditions, chemists can create a wide range of compounds, from simple molecules to complex active ingredients.

15+ products
4 whitepaper
15+ brochures