Carbon molecule with a charge could be tomorrow's semiconductor
Discovery of this new class of stable molecules (M2@C79N ) was supported by computational studies by Daniel Crawford, associate professor of chemistry at Virginia Tech, and the structure was confirmed by x-ray crystallographic studies by Alan Balch , professor of chemistry at the University of California, Davis.
This research is reported in the Journal of the American Chemical Society (JACS), in an article by Dorn and his colleagues at Virginia Tech and UC Davis. The article does not speculate about potential applications, but Dorn does.
"No one has done anything like this," said Dorn. "Since the article was published, we now know that we can take the electron back out of the fullerene cage."
He says the discovery could be important to the new fields of spintronics, molecular electronics, and micro to nanoscale electronics, as well as the new field of quantum computing.
"The single electron bonded-diatomic yttrium has unique spin properties that can be altered. Increasing the polarization of this spin, could be important for improving the sensitivity of MRI and NMR, he said.
But more interesting are the electronic applications. "If we replace one of the carbon atoms with boron instead of nitrogen, we would be an electron short, instead of having an extra electron. Now you have the components of a semiconductor," Dorn said.
Original publication: Tianming Zuo, Liaosa Xu, Christine M. Beavers, Marilyn M. Olmstead, Wujun Fu, Crawford, Balch, and Dorn; "M2@C79N (M ) Y, Tb): Isolation and Characterization of Stable Endohedral Metallofullerenes Exhibiting M-M Bonding Interactions inside Aza[80]fullerene Cages"; JCAS 2008.
Most read news
Other news from the department science
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.