Breaking harmful bonds
Brandeis scientists convert the mighty C-F bond
Chlorofluorocarbons (CFCs or freons) are harmful to the ozone layer. Hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs) are generating concern because they are considered super-greenhouse gases, with great potential to warm the environment by trapping solar radiation and remaining virtually indestructible in the atmosphere.
"The C-F bond is difficult to transform into other bonds under mild conditions because it is inert and unreactive; it's a challenge to chemists," said lead author chemist Oleg Ozerov, who conducted the research with postdoc Christos Douvris. "But we found a way to take a C-F bond that you can do very little with and break it and convert it cleanly into something else at room temperature."
With research support from the Department of Energy, Sloan Foundation, and Research Corporation, Ozerov identified a new catalytic process for a class of carborane-silylium compounds that causes the bonds in representative HFCs to react at room temperature, swapping their carbon-fluorine bonds for carbon-hydrogen bonds. The silylium catalyst performs the critical task of breaking the C-F bond by abstracting the fluoride from the fluorocarbon and attaching it to a silicon atom. The end product is a compound with a silicon-fluorine bond, which is no longer a greenhouse threat.
This finding could eventually lead to large-scale reactions to convert environmental pollutants that contain C-F bonds into products that could be reused or destroyed without special equipment.
Topics
Organizations
Other news from the department research and development
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.