Newly detected air pollutant mimics damaging effects of cigarette smoke
Persistent free radicals, a newly discovered air pollutant, could have effects similar to cigarette smoke, Louisiana researchers say.
"Free radicals from tobacco smoke have long been suspected of having extremely harmful effects on the body," Dellinger said. "Based on our work, we now know that free radicals similar to those in cigarettes are also found in airborne fine particles and potentially can cause many of the same life-threatening conditions. This is a staggering, but not unbelievable result, when one considers all of diseases in the world that cannot currently be attributed to a specific origin."
Most of these previously identified atmospheric free radicals form as gases, exist for less than one second, and disappear. In contrast, the newly detected molecules — which Dellinger terms persistent free radicals (PFRs) — form on airborne nanoparticles and other fine particle residues as gases cool in smokestacks, automotive exhaust pipes and household chimneys. Particles that contain metals, such as copper and iron, are the most likely to persist, he said. Unlike other atmospheric free radicals, PFRs can linger in the air and travel great distances.
"You basically have to be in certain places to inhale transient gas-phase radicals," Dellinger said. "You'd have to be right next to a road when a car passes, for example. Whereas we found that persistent radicals can last indefinitely on airborne fine particles. So you're never going to get away from them."
Once PFRs are inhaled, Dellinger suspects they are absorbed into the lungs and other tissues where they contribute to DNA and other cellular damage. Epidemiological studies suggest that more than 500,000 Americans die each year from cardiopulmonary disease linked to breathing fine particle air pollution, he says.
Most read news
Topics
Organizations
Other news from the department science
These products might interest you
NANOPHOX CS by Sympatec
Particle size analysis in the nano range: Analyzing high concentrations with ease
Reliable results without time-consuming sample preparation
Eclipse by Wyatt Technology
FFF-MALS system for separation and characterization of macromolecules and nanoparticles
The latest and most innovative FFF system designed for highest usability, robustness and data quality
DynaPro Plate Reader III by Wyatt Technology
Screening of biopharmaceuticals and proteins with high-throughput dynamic light scattering (DLS)
Efficiently characterize your sample quality and stability from lead discovery to quality control
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.