Protons pair up with neutrons
The result, based on the first-ever simultaneous measurement of such pairings and their constituents, could have implications for understanding the structure of nuclear systems from light nuclei to neutron stars. Protons and neutrons, or nucleons, in the nucleus of the atom can form a brief pairing with another nucleon, a phenomenon known as a short-range correlation. Previous experiments have shown that roughly one-fifth of nucleons at any one time were in short-range correlations.
Jefferson Lab Staff Scientist Douglas Higinbotham and his colleagues conducted an experiment in Jefferson Lab's Experimental Hall A to directly and simultaneously measure the constituents of the short-range correlations in the carbon nucleus.
"These correlated nucleons have a high relative momentum. If you knock one out one way, the correlated nucleon will fly out in the opposite direction," noted Higinbotham. "We set up our detectors to take advantage of this."
The experiment found that 18 percent of all protons in the nucleus were paired with neutrons. Another one percent of protons were paired with protons, with about the same percentage of neutron/neutron pairs.
"I think it shows, for the first time in a very clear and unambiguous way, this fact that the large momentum nucleons in nuclei are coming in pairs. And they're coming mainly in proton/neutron pairs," said Eli Piasetzky, a professor at Tel Aviv University and a spokesperson on the experiment.
Higinbotham agreed. "The result from this experiment is like finding that missing piece needed to finish a puzzle. This experiment, combined with others, gives us a very coherent picture of these short-range correlations in the nucleus."
In the experiment, a beam of energetic electrons was sent into a thin sheet (0.25 mm) of Carbon-12. The scientists were interested in the electrons that interacted with a member of a short-range correlation. Recoil electrons and knockout protons were measured in Jefferson Lab Experimental Hall A's High Resolution Spectrometers. Correlated protons and neutrons were measured in the BigBite large acceptance spectrometer and a neutron detector. The ability to clearly resolve the short-range correlated pairs is due to the high energy and large intensity beam at Jefferson Lab.
When combined with a theoretical calculation of the effects of proton/neutron correlations on the momentum distribution of the nucleons in neutron stars, the result also indicates that the presence of short-range correlations may have a disproportionately large effect on neutron star structure.
Most read news
Other news from the department science
These products might interest you
AZURA Analytical HPLC by KNAUER
Maximize your analytical efficiency with customized HPLC system solutions
Let your application define your analytical system solution
DAWN® by Wyatt Technology
The instrument for Multi-Angle Light Scattering (MALS): The DAWN® from Wyatt Technology
The world's most advanced light scattering instrument for absolute characterization of macromolecules
Get the chemical industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.