Princeton scientists discover exotic quantum state of matter

'Quantum Hall-like effect' found in a bulk material without an applied magnetic field

28-Apr-2008

A team of scientists from Princeton University has found that one of the most intriguing phenomena in condensed-matter physics - known as the quantum Hall effect - can occur in nature in a way that no one has ever before seen.

The scientists report that they have recorded this exotic behavior of electrons in a bulk crystal of bismuth-antimony without any external magnetic field being present. The work, while significant in a fundamental way, could also lead to advances in new kinds of fast quantum or "spintronic" computing devices, of potential use in future electronic technologies, the authors said.

"We had the right tool and the right set of ideas," said Zahid Hasan, an assistant professor of physics who led the research and propelled X-ray photons at the surface of the crystal to find the effect. The team used a high-energy, accelerator-based technique called "synchrotron photo-electron spectroscopy." And, Hasan added, "We had the right material."

The quantum Hall effect has only been seen previously in atomically thin layers of semiconductors in the presence of a very high applied magnetic field. In exploring new realms and subjecting materials to extreme conditions, the scientists are seeking to enrich the basis for understanding how electrons move.

Electrons, which are electrically charged particles, behave in a magnetic field, as some scientists have put it, like a cloud of mosquitoes in a crosswind. In a material that conducts electricity, like copper, the magnetic "wind" pushes the electrons to the edges. An electrical voltage rises in the direction of this wind -- at right angles to the direction of the current flow. Edwin Hall discovered this unexpected phenomenon, which came to be known as the Hall effect, in 1879. The Hall effect has become a standard tool for assessing charge in electrical materials in physics labs worldwide.

In search of that exotic electron behavior, Hasan's team decided to go beyond the conventional tools for measuring quantum Hall effects. They took the bulk three-dimensional crystal of bismuth-antimony, zapped it with ultra-fast X-ray photons and watched as the electrons jumped out. By fine-tuning the X-rays, they could directly take pictures of the dancing patterns of the electrons on the edges of the sample. The nature of the quantum Hall behavior in the bulk of the material was then identified by analyzing the unique dancing patterns observed on the surface of the material in their experiments. The images observed by the Princeton group provide the first direct evidence for quantum Hall-like behavior without external magnetic fields.

Other news from the department science

Most read news

More news from our other portals

So close that even
molecules turn red...

See the theme worlds for related content

Topic World Spectroscopy

Investigation with spectroscopy gives us unique insights into the composition and structure of materials. From UV-Vis spectroscopy to infrared and Raman spectroscopy to fluorescence and atomic absorption spectroscopy, spectroscopy offers us a wide range of analytical techniques to precisely characterize substances. Immerse yourself in the fascinating world of spectroscopy!

70+ products
40+ whitepaper
60+ brochures
View topic world
Topic World Spectroscopy

Topic World Spectroscopy

Investigation with spectroscopy gives us unique insights into the composition and structure of materials. From UV-Vis spectroscopy to infrared and Raman spectroscopy to fluorescence and atomic absorption spectroscopy, spectroscopy offers us a wide range of analytical techniques to precisely characterize substances. Immerse yourself in the fascinating world of spectroscopy!

70+ products
40+ whitepaper
60+ brochures