Efficient Catalysts for Making Oxygen for 'Artificial Photosynthesis'
Research could lead to more efficient, cleaner hydrogen production
Water oxidation, a step in photosynthesis, is one part of "water-splitting" - splitting water into hydrogen and oxygen, a very complex process. Water-splitting requires a large amount of energy from sunlight and metal catalysts to activate the very stable water molecules. It occurs as two separate "half" reactions: water oxidation produces the oxygen, along with protons and electrons; these protons and electrons are then combined to make molecular hydrogen.
"The water oxidation reaction is generally believed to be the 'limiting' process, meaning that if it is not catalyzed efficiently, it limits hydrogen production," said Brookhaven chemist James Muckerman, co-author on the current paper. "You can't sustain hydrogen production without the protons and electrons generated by water oxidation. So, to make hydrogen from water for use in fuel cells, we must meet the challenge of performing efficient and inexpensive water oxidation," Muckerman said.
Brookhaven chemist Etsuko Fujita, co-author on the paper, explains how the Brookhaven team has been collaborating with Japanese scientists Koji Tanaka and Tohru Wada, who in 2001 discovered a novel catalyst that appears quite promising for water oxidation. "We are combining theoretical and experimental studies to determine how this ruthenium complex with bound quinone molecules efficiently catalyzes water oxidation to form oxygen," she said.
To accomplish the water-oxidation reaction, Tanaka and Wada immobilized the ruthenium catalyst on an electrode, placed it in an aqueous solution, and applied a voltage, resulting in a rapid turnover for oxidizing water to oxygen. The research team, which also includes Brookhaven's Dmitry Polyansky, continues to collaborate on further studies to understand the details of how the catalyst works.
The scientists have discovered that when the protons from two water molecules are removed due to acid-base reactions in solution, four electrons are transferred to electron receptor sites in the catalyst. Once all the protons are removed, the theoretical calculations predict that an oxygen-oxygen bond is formed.
What makes their catalyst "novel" is that in most metal-based compound catalysts these electron receptor sites are located on the metal atoms, but in this ruthenium complex the receptor sites are on the quinone molecules. More theoretical and experimental studies will be needed to fully understand and improve the mechanisms of quinone-containing catalysts.
"The ruthenium in our catalyst is somewhat expensive, so we plan to continue our studies with more economical catalysts incorporating less-expensive metals," Muckerman said.
Most read news
Topics
Organizations
Other news from the department science
These products might interest you
Multi-Liter Hydrogen Gasgenerator by VICI
Laboratory hydrogen supply redefined
Up to 18 l/min hydrogen with 99.99997% purity and intuitive touchscreen control
CATLAB Catalysis and Thermal Analysis by Hiden Analytical
A system for catalyst characterisation, kinetic and thermodynamic measurements
Integrated Microreactor-Mass Spectrometer for Reaction Testing, TPD/R/O and Pulse Chemisorption.
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.