To the Edge of Melting
The experiment also demonstrated an important timing technique and was one of the last endeavors at the now-dismantled Sub-Picosecond Pulse Source (SPPS) - a proving ground for the more powerful Linac Coherent Light Source (LCLS), a free electron laser, which is now under construction at SLAC. Being able to agitate a material with a laser pulse in the near infrared and then immediately measure its altered state with x-rays opens up an exciting world for researchers concerned with more complex systems that could prove helpful to medicine, clean energy and other fields.
When a laser pulse strikes a semi-metal called bismuth, it disturbs the material's electrons. Because the laser energy is not enough to melt bismuth, the electrons relax back to their normal state in less than a nanosecond (one billionth of a second). But what happens in between? "We had to be quick to figure it out," said lead author David Fritz, who worked on the project as a University of Michigan student and is now an instrument scientist for LCLS. The laser, the x-ray pulses and the atoms themselves operate on femtosecond time scales.
Scientists need to know exactly when the laser fired and when the x-rays swooped through, so that the picture they assemble from the data is chronologically ordered. The authors utilized an electro-optic crystal to time-stamp the arrival of each x-ray pulse, solving a difficult problem: while lasers can be pulsed in steady, reliable intervals, x-rays from a linear accelerator cannot be controlled as well, and thus require a "stop-watch" to mark their arrival time. Dr. Reinhard Kienberger and Dr. Adrian Cavalieri from MPQ had devoted considerable effort to development of timing systems suitable for these next-generation machines.
The laser instantly changes bismuth's potential energy surface - a measure of the forces that hold solids together - thus weakening bismuth's atomic bonds. This puts the atom's nucleus out of equilibrium, like moving a marble from the center of a bowl up its sloped sides. To get back into equilibrium, the atom "rolls" to the center of the bowl and oscillates around the lowest point, like a marble before it comes to rest in the center of the bowl. The researchers measured the frequency of these oscillations to determine the forces that bind the atoms together.
The results also back a theoretical framework used to predict potential energy surfaces for systems that are in equilibrium. The framework, with simple modifications, surprisingly worked for the out-of-equilibrium bismuth system as well. This is the first time-dependent mapping of a solid's potential energy surface.
Organizations
Other news from the department science
These products might interest you
MS-Präzisionswaagen by Mettler-Toledo
Trusted Results at Your Fingertips
Capacity from 320 g to 12.2 kg, readability from 1 mg to 100 mg
Good Weighing Practice by Mettler-Toledo
Your Concrete Weighing Quality Assurance Plan
GWP Verification service
Precision balances by Ohaus
High-performance precision balances for everyday use in laboratories & industry
From milligram-accurate measurement of small samples to routine weighing in the kilogram range
Pioneer PX by Ohaus
Never before has a low-cost balance been such a good long-term investment
Accurate results every time - even when exposed to temperature fluctuations & electromagnetic fields
Automatische XPR-Waagen by Mettler-Toledo
Production of standards, samples and concentrations - fast and reliable
Automate the weighing processes in your laboratory - ideal also for sample prep at chromatography
Balances analytiques by Ohaus
Analytical balances with outstanding weighing performance, as easy to use as a smartphone
These space-saving analytical and semi-micro balances are surprisingly intuitive to use
XPR Precision Balances by Mettler-Toledo
Fast and Accurate Precision Weighing Even in Difficult Conditions
XPR Precision Balances / Solutions to support you with data management, traceability and regulatory compliance
Carepacs by Mettler-Toledo
Professional CarePacs for smooth routine testing
Tweezers, gloves and other accessories for professional weight handling
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.