Branched Molecule acts as Carrier for Multiple Proteins? A New Approach to the Production of Multivalent Drugs
Meijer and his team of scientists from the Universities of Eindhoven, Utrecht, and Maastricht chose to use dendrimers as scaffold molecules. Dendrimers are spherical, highly symmetrical molecules with cascading branches. As with a tree, the central trunk of the molecule holds branches, which then continue to branch out further and further. The researchers in the Netherlands thus needed to produce dendrimers with proteins attached to the tips of their branches.
However, the researchers found a generally applicable strategy, a method called Native Chemical Ligation, by which protein fragments can selectively and spontaneously be hooked together to form "natural" peptide bonds. In order for this to work with dendrimers, the tips of the branches must be equipped with special functional groups. The proteins and peptide chains must then be attached to the required complementary fragment.
If an excess of dendrimer is then allowed to react with a low amount of protein, dendrimer molecules are formed that contain exactly one protein molecule each. Subsequently, more branches can be equipped with proteins?either the same kind or a different sort. The number of proteins attached depends on the size, form, and, of course, the number of branch tips on the dendrimer. "Our method offers access to a broad palette of precisely defined multivalent peptides and proteins," says Meijer. "This allows for the systematic investigation of multivalent biological interactions."
Other news from the department science
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.