New Noble Gas Chemical Compounds Created as Result of Hebrew University Research

29-Mar-2005

Chemical compounds consisting of noble gases combined with hydrocarbon molecules have been created as the result of the work of researchers at the Hebrew University of Jerusalem. This achievement by Benny Gerber, Saerree K. and Louis P. Fiedler Professor of chemistry, and his associates at the Hebrew University Institute of Chemistry opens the way for further research to produce new chemical compounds in such areas as anesthesiology and high-energy fuels that will be more efficient, safer and ecologically less injurious than materials now in use.

The noble elements have inert atoms which do not combine chemically with other atoms, except under conditions of extreme energy being applied to release their electrons. A major development in order to achieve molecular combinations was accomplished in the 1960s, but only with great difficulty and for a only a few extremely potent reagents, such as fluorine. This limited the types of compounds that could be made and their potential applications. Since then, the search for new compounds involving noble gases has continued and has represented a significant scientific challenge with great promise.

An important breakthrough in this field was achieved by Prof. Gerber of the Hebrew University when he predicted, on the basis of theoretical calculations, the existence of a new chemical "family" made up of noble gas atoms and hydrocarbons. Operating on the basis of Prof. Gerber's theories, leading scientists in Finland (Prof. Markku Rasanen and coworkers) and in Moscow (Prof. Vladimir Feldman and others) succeeded in producing the new compounds in their laboratories. The process by which these compounds were obtained was relatively much easier than in previous attempts, without having to resort to the techniques used in the past involving undesirable, extremely reactive materials.

The combining of noble gas atoms with basic organic molecules (hydrocarbons) is an accomplishment which opens the way for new varieties of chemical derivates utilizing these gases. For example, the gas xenon, which does not have any negative physiological effects, could be used to produce new anesthetic compounds. Another possible use would be the production of new fuels that would be more energy efficient and less polluting than those now in use. Other applications could be in the creation of any number of new chemical-based products used in industry, medicine or agriculture that would be less polluting of the environment than materials currently used.

Other news from the department science

These products might interest you

Systec H-Series

Systec H-Series by Systec

Safe, reproducible and validatable sterilization of liquids, solids and waste

Autoclaves with 65-1580 liters usable space, flexibly expandable for various applications

laboratory autoclaves
Gilson MyPIPETMAN Select and MyPIPETMAN Enterprise Pipettes

Gilson MyPIPETMAN Select and MyPIPETMAN Enterprise Pipettes by Gilson

Grab the Gilson pipettes with your name and favorite colors!

Customise Your Pipettes to Fit Your Research

pipettes
Whatman™ folded filter papers

Whatman™ folded filter papers by Cytiva

Whatman folded filter papers

Convenient folded formats speed up your sample preparation

filter papers
Loading...

More news from our other portals

Is artificial intelligence revolutionising chemistry?