Membraneless fuel cell is tiny, versatile

29-Mar-2005

A fuel cell designed by researchers at the University of Illinois at Urbana-Champaign can operate without a solid membrane separating fuel and oxidant, and functions with alkaline chemistry in addition to the more common acidic chemistry. While most fuel cells employ a physical barrier to separate the fuel and oxidant, the microfluidic fuel cell developed at Illinois utilizes multi-stream laminar flow to accomplish the same task.

"The system uses a Y-shaped microfluidic channel in which two liquid streams containing fuel and oxidant merge and flow between catalyst-covered electrodes without mixing," said Paul Kenis, a professor of chemical and biomolecular engineering and a researcher at the Beckman Institute for Advanced Science and Technology.

Fluids flowing through channels of microscale dimensions behave differently than fluids flowing through the much larger pipes found in home plumbing systems, Kenis said. "At the microscale, there is no turbulence. This laminar flow means streams of fuel and oxidant can pass side by side without having a physical barrier in between."

Most fuel cells use a polymer electrolyte membrane to separate the cathode and anode. In the Illinois fuel cell, the physical membrane is replaced by the behavior of laminar flow. The fuel and oxidant are brought together as liquid streams in the microchannel. The protons and electrons diffuse through the liquid-liquid interface. This configuration offers several advantages over PEM-based fuel cells, including fewer parts and simpler design. It also means that membraneless fuel cells are compatible with alkaline chemistry. Just as alkaline batteries outperform acidic batteries, alkaline fuel cells should be superior to acidic fuel cells, Kenis said. Several problems, however, have prevented the widespread use of alkaline chemistries in PEM-based fuel cells. Among them are poor permeability of the membranes to hydroxide ions (which take the place of protons in acidic fuel cells) and clogging of the membranes from the formation of carbonates.

"Since the membraneless fuel cell is based on a phenomenon that occurs only at the microscale, we can't just scale up to larger dimensions," Kenis said. "Instead, we need to scale out by creating arrays of many fuel cells connected in series and in parallel."

Collaborators included chemistry professor Andrzej Wieckowski, postdoctoral research associates Lajos Gancs, Jayashree Ranga and Piotr Waszczuk (now at Guidant), graduate students Eric Choban (now at 3M) and Jacob Spendelow, and undergraduate Ajay Virkar. The work was funded by the Army Research Office, the Beckman Institute, and the University of Illinois. The researchers have applied for a patent.

Other news from the department science

These products might interest you

Multi-Liter Hydrogen Gasgenerator

Multi-Liter Hydrogen Gasgenerator by VICI

Laboratory hydrogen supply redefined

Up to 18 l/min hydrogen with 99.99997% purity and intuitive touchscreen control

hydrogen generators
CATLAB Catalysis and Thermal Analysis

CATLAB Catalysis and Thermal Analysis by Hiden Analytical

A system for catalyst characterisation, kinetic and thermodynamic measurements

Integrated Microreactor-Mass Spectrometer for Reaction Testing, TPD/R/O and Pulse Chemisorption.

mass spectrometers
Loading...

Most read news

More news from our other portals

Is artificial intelligence revolutionising chemistry?

See the theme worlds for related content

Topic World Battery Technology

The topic world Battery Technology combines relevant knowledge in a unique way. Here you will find everything about suppliers and their products, webinars, white papers, catalogs and brochures.

25+ products
150+ companies
30+ whitepaper
20+ brochures
View topic world
Topic World Battery Technology

Topic World Battery Technology

The topic world Battery Technology combines relevant knowledge in a unique way. Here you will find everything about suppliers and their products, webinars, white papers, catalogs and brochures.

25+ products
150+ companies
30+ whitepaper
20+ brochures