Micro-spectrometer opens door to a wealth of new smartphone functions

21-Dec-2017 - Netherlands

Use your smartphone to check how clean the air is, whether food is fresh or a lump is malignant. This has all come a step closer thanks to a new spectrometer that is so small it can be incorporated easily and cheaply in a mobile phone. The little sensor developed at TU Eindhoven is just as precise as the normal tabletop models used in scientific labs.

Eindhoven University of Technology

The upper picture shows the entire device; the large yellow areas are contact pads. The lower picture shows the perforated membrane, and the inlay zooms in on the photonic crystal cavity (the area without holes).

Eindhoven University of Technology

The blue perforated slab is the upper membrane, with the photonic crystal cavity in the middle. This captures the light of a specific near infrarad frequency and generates a current that is measured (A). If the distance to the red, lower slab is changed, the captured frequency changes.

Eindhoven University of Technology
Eindhoven University of Technology

Spectrometry, the analysis of visible and invisible light, has an enormous range of applications. Every material and every tissue has its own 'footprint' in terms of light absorption and reflection, and can thus be recognized by spectrometry. But precise spectrometers are large since they split up the light into different colors (frequencies), which are then measured separately. Just after the light is split, the beams, which have different frequencies, still overlap each other; highly precise measurements can therefore only be made some tens of centimeters after the splitting.

The Eindhoven researchers developed an ingenious sensor that is able to make such precise measurements in an entirely different way using a special 'photonic crystal cavity', a 'trap' of just a few micrometers into which the light falls and cannot escape. This trap is contained in a membrane, into which the captured light generates a tiny electrical current, and that is measured. PhD student Zarko Zobenica made the cavity so that it is very precise, retaining just a very tiny frequency interval and therefore measuring only light at that frequency.

To be able to measure a larger frequency range, the researchers placed two of their membranes very closely one above the other. The two membranes influence each other: if the distance between them changes slightly, then the light frequency that the sensor is able to detect shifts too. For this purpose the researchers, supervised by professor Andrea Fiore and associate professor Rob van der Heijden, incorporated a MEMS (a micro-electromechanical system). This electromechanical mechanism allows the distance between the membranes to be varied, and thereby the measured frequency. Ultimately, then, the sensor covers a wavelength range of around thirty nanometers, within which the spectrometer can discern some hundred thousand frequencies, which is exceptionally precise. This is made possible by the fact that the researchers are able to precisely determine the distance between the membranes to just a few tens femtometers (10^-15 meters).

To demonstrate the usefulness, the research team demonstrated several applications, including a gas sensor. They also made an extremely precise motion sensor by making clever use of the fact that the detected frequency changes whenever the two membranes move in relation to each other.

Professor Fiore expects it will take another five years or more before the new spectrometer actually gets into a smartphone because the frequency range covered is currently still too small. At the moment, the sensor covers just a few percent of the most common spectrum, the near-infrared. So his group will be working on extending the detectable spectrum. They will also be integrating an extra element with the micro-spectrometer: a light source, which will make the sensor independent of external sources.

Given the enormous breadth of applications, micro-spectrometers are expected to eventually become just as important an element of the smartphone as the camera. For example, to measure CO2, detect smoke, determine what medicine you have, measure the freshness of food, the level of your blood sugar, and so on.

Original publication

Other news from the department science

These products might interest you

SPECORD PLUS

SPECORD PLUS by Analytik Jena

SPECORD PLUS Series - Maximum precision in UV/Vis

The modern classic guarantees the highest quality

contrAA 800

contrAA 800 by Analytik Jena

contrAA 800 Series – Atomic Absorption. Redefined

The best of classical atomic absorption and ICP-OES spectrometry are combined in the contrAA 800

ICP-OES spectrometer
ZEEnit

ZEEnit by Analytik Jena

Zeeman Technology for Maximum Sensitivity – Matching any Analytical Problem

Transverse-heated graphite furnace for optimum atomization conditions and high sample throughput

AAS spectrometers
ERASPEC

ERASPEC by eralytics

Spectral Fuel Analysis in Seconds with ERASPEC

Fast delivery of over 40 fuel parameters at the push of a button

Agera

Agera by HunterLab Europe

Measure color and gloss level simultaneously - in seconds

Easy-to-use colorimeter: standard-compliant, robust and precise

colorimeters
PlasmaQuant 9100

PlasmaQuant 9100 by Analytik Jena

PlasmaQuant 9100 Series of ICP-OES Instruments

Reveal the Details That Matter

ICP-OES spectrometer
INVENIO

INVENIO by Bruker

FT-IR spectrometer of the future: INVENIO

Freely upgradeable and configurable FT-IR spectrometer

FTIR spectrometers
ALPHA II

ALPHA II by Bruker

Chemical analysis made easy: compact FT-IR system

Increase the efficiency of your routine analyses with user-friendly technology

FTIR spectrometers
Microspectrometer

Microspectrometer by Hamamatsu Photonics

Ultra-compact microspectrometer for versatile applications

Precise Raman, UV/VIS and NIR measurements in portable devices

microspectrometers
NANOPHOX CS

NANOPHOX CS by Sympatec

Particle size analysis in the nano range: Analyzing high concentrations with ease

Reliable results without time-consuming sample preparation

particle analyzers
S2 PICOFOX

S2 PICOFOX by Bruker

Fast and precise trace element analysis on the move

TXRF technology for minimal samples and maximum efficiency

total reflection x-ray fluorescence spectrometers
S4 T-STAR

S4 T-STAR by Bruker

TXRF spectrometer: Sub-ppb detection limits & 24/7 analytics

Minimal operating costs because no gases, media or lab equipment are required

total reflection x-ray fluorescence spectrometers
PlasmaQuant MS Elite

PlasmaQuant MS Elite by Analytik Jena

LC-ICP-MS Is the Key to the World of Elemental Species

Highest Sensitivity and Lowest Detection Limits with PlasmaQuant MS Series and PQ LC

novAA®  800

novAA® 800 by Analytik Jena

The Analyzer 4 You - novAA 800-Series

The reliable all-rounder, making routine analysis efficient and cost-effective

2060 Raman Analyzer

2060 Raman Analyzer by Metrohm

Self-calibrating inline Raman spectrometer

Analyze solids, liquids and gases - for reproducible, accurate results in the process

Micro-Z ULS

Micro-Z ULS by Rigaku

Accurately measure sulphur content in fuels: WDXRF analyser

Reliable routine analyses with 0.3 ppm detection limit and compact design

WDXRF spectrometers
ZSX Primus IV/IVi

ZSX Primus IV/IVi by Rigaku

High-precision WDXRF analysis for industrial applications

Maximum sensitivity and throughput for light elements and complex samples

BIOS ANALYTIQUE - Soluciones de Renting y Leasing para laboratorios

BIOS ANALYTIQUE - Soluciones de Renting y Leasing para laboratorios by Bios Analytique

Specialists in the rental and leasing of scientific equipment for laboratories throughout Europe

Whether you have an unexpected requirement or limited budget, we have the perfect solution for you

lab equipment
SPECTRO ARCOS

SPECTRO ARCOS by SPECTRO Analytical Instruments

The inductively coupled plasma optical emission spectrometer (ICP-OES) for highest demands

The top-of-line SPECTRO ARCOS ICP-OES analyzer evolves elemental analysis to the next level

ICP-OES spectrometer
NEX CG II

NEX CG II by Applied Rigaku Technologies

Elemental analysis at ppb level for exact results

X-ray fluorescence spectrometers
Loading...

Most read news

More news from our other portals

All FT-IR spectrometer manufacturers at a glance

See the theme worlds for related content

Topic world Sensor technology

Sensor technology has revolutionized the chemical industry by providing accurate, timely and reliable data across a wide range of processes. From monitoring critical parameters in production lines to early detection of potential malfunctions or hazards, sensors are the silent sentinels that ensure quality, efficiency and safety.

4 products
1 whitepaper
4 brochures
View topic world
Topic world Sensor technology

Topic world Sensor technology

Sensor technology has revolutionized the chemical industry by providing accurate, timely and reliable data across a wide range of processes. From monitoring critical parameters in production lines to early detection of potential malfunctions or hazards, sensors are the silent sentinels that ensure quality, efficiency and safety.

4 products
1 whitepaper
4 brochures