An ultradilute quantum liquid made from ultra-cold atoms
ICFO/ Povarchik Studios Barcelona
But are gases always dilute and liquids always dense? Although in normal conditions the answer to this question is undoubtedly yes, things can become very different at ultralow temperatures. In a recent study, ICFO researchers Cesar R. Cabrera, Dr. Luca Tanzi, Julio Sanz, Dr. Bruno Naylor, Philip Thomas, and Dr. Pierrick Cheiney, led by Cellex Nest ICFO Prof. Leticia Tarruell, have created a liquid one hundred million times more dilute than water and one million times thinner than air.
To this aim, the team cooled down a gas of potassium atoms to -273.15 degrees Celsius, very close to the absolute zero. Although at these temperatures the atoms behave as waves and follow the rules of quantum mechanics, they still conserve an intrinsic property of a gas: they expand in the absence of container. In contrast, when two of such gases are mixed together and attract each other, the atoms instead form liquid droplets. As Cesar Cabrera, first author of the study, explains: "in many aspects, our potassium droplets are very similar to those of water: they have their own size and shape, regardless of where we put them, but they are much colder and their properties are quantum".
Indeed, the existence of these liquid droplets is entirely due to quantum fluctuations, a fascinating intrinsic quantum effect. Furthermore, due to quantum mechanics the atoms forming a droplet cannot stay completely at rest inside it: this is forbidden by Heisenberg's uncertainty principle. They thus remain in perpetual motion, leading to a quantum pressure that makes very small droplets unstable and evaporates them into an expanding gas. Prof. Leticia Tarruell comments: "These droplets are fascinating macroscopic objects: even if they are made up of thousands of particles, their behavior is still fully determined by quantum fluctuations and correlations. By observing the phase transition between liquid and gas, we measure very precisely these surprising quantum effects".
The unique combination of diluteness and "quantumness" makes quantum liquid droplets an ideal testbed to better understand quantum systems made of many interacting particles, and comprehend features they share with liquid Helium, neutron stars or other complex materials.
Original publication
Other news from the department science
Get the chemical industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.