A simpler way to deposit magnetic iron oxide onto gold nanorods
Brian Chapman
Gold nanorods have widespread potential applications because they have a surface plasmon resonance - meaning they can absorb and scatter light. And by controlling the dimensions of the nanorods, specifically their aspect ratio (or length divided by diameter), the wavelength of the absorbed light can be controlled. This characteristic makes gold nanorods attractive for use in catalysis, security materials and a host of biomedical applications, such as diagnostics, imaging, and cancer therapy. The fact that the magnetite-gold nanoparticles can also be manipulated using a magnetic field enhances their potential usefulness for biomedical applications, such as diagnostic tools or photothermal therapeutics.
"The approach we outline in our new paper is simple, likely making it faster and less expensive than current techniques for creating these nanoparticles - on a small scale or a large one," says Joe Tracy, an associate professor of materials science and engineering at NC State and corresponding author of a paper on the work.
The new technique uses an approach called heteroaggregation. Silica-coated gold nanorods are dispersed in ethanol, a polar solvent. In ethanol, the hydrogen atoms are partially positively charged, and the oxygen atoms are partially negatively charged. The magnetite nanoparticles are dispersed in hexanes, a non-polar solvent, where the charges are not separated. When the two solutions are mixed, the magnetite nanoparticles bind to the gold nanorods - and the resulting magnetite-gold nanoparticles are removed from the solvent using a simple centrifugation process.
"We are able to take pre-synthesized, silica-coated gold nanorods and iron oxide nanoparticles and then combine them," says Brian Chapman, a Ph.D. student at NC State and lead author of the paper. "This is simpler than other techniques, which rely on either growing iron oxide nanoparticles on gold nanorods or using molecular cross-linkers to bind the iron to the silica coating of the nanorods."
"Our approach also results in highly uniform nanoparticles," Tracy says. "And by incorporating ligands called PEG-catechols, the resulting nanoparticles can be dispersed in water. This makes them more useful for biomedical applications.
"These are interesting, and potentially very useful, multifunctional nanoparticles," Tracy adds. "And hopefully this work will facilitate the development of applications that capitalize on them."
Original publication
Other news from the department science
These products might interest you
NANOPHOX CS by Sympatec
Particle size analysis in the nano range: Analyzing high concentrations with ease
Reliable results without time-consuming sample preparation
Eclipse by Wyatt Technology
FFF-MALS system for separation and characterization of macromolecules and nanoparticles
The latest and most innovative FFF system designed for highest usability, robustness and data quality
DynaPro Plate Reader III by Wyatt Technology
Screening of biopharmaceuticals and proteins with high-throughput dynamic light scattering (DLS)
Efficiently characterize your sample quality and stability from lead discovery to quality control
Get the chemical industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.